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Preface

The main subjects of the Developments in Language Theory (DLT) confer-
ence series are formal languages, automata, conventional and unconventional
computation theory, and applications of automata and language theory. Typ-
ical, but not exclusive, topics of interest include: grammars and acceptors for
strings, graphs, and arrays; efficient text algorithms; combinatorial and alge-
braic properties of languages; decision problems; relations to complexity theory
and logic; picture description and analysis; cryptography; concurrency; and DNA
and quantum computing.

The members of the steering committee of DLT are: J. Berstel (Paris),
M. Ito (Kyoto), W. Kuich (Vienna), G. Păun (Bucharest and Seville), A. Restivo
(Palermo), G. Rozenberg (chair, Leiden), A. Salomaa (Turku) and W. Thomas
(Aachen).

The first DLT conference was organized by G. Rozenberg and A. Salomaa
in Turku in 1993. After this, the DLT conferences were held in every odd year:
Magdeburg (1995), Thessaloniki (1997), Aachen (1999) and Vienna (2001). Since
2001, a DLT conference has been organized in every odd year in Europe and in
every even year outside Europe. The last two DLT conferences were organized
in Kyoto, Japan in 2002 and Szeged, Hungary in 2003. The titles of the volumes
of the past DLT conferences are the following:

1. Developments in Language Theory. At the Crossroads of Mathematics, Com-
puter Science and Biology (edited by G. Rozenberg and A. Salomaa) (1994)
(World Scientific)

2. Developments in Language Theory II. At the Crossroads of Mathematics,
Computer Science and Biology (edited by J. Dassow, G. Rozenberg and
A. Salomaa) (1996) (World Scientific)

3. Proceedings of the Third International Conference on Developments in Lan-
guage Theory (edited by S. Bozapalidis) (1997) (Aristotle University of Thes-
saloniki)

4. Developments in Language Theory. Foundations, Applications and Perspec-
tives (edited by G. Rozenberg and W. Thomas) (2000) (World Scientific)

5. Developments in Language Theory, Lecture Notes in Computer Science 2295
(edited by W. Kuich, G. Rozenberg and A. Salomaa) (2002) (Springer)

6. Developments in Language Theory, Lecture Notes in Computer Science 2450
(edited by M. Ito and M. Toyama) (2003) (Springer)

7. Proceedings of the Developments in Language Theory Conference, Lecture
Notes in Computer Science 2710 (edited by Z. Ésik and Z. Fülöp) (2003)
(Springer)



VI Preface

The latest conference, DLT 2004, which ran under the auspices of the Eu-
ropean Association for Theoretical Computer Science (EATCS), was supported
by the New Zealand Royal Society. It was jointly organized by Massey Uni-
versity at Albany and the Centre for Discrete Mathematics and Theoretical
Computer Science of the University of Auckland and was held at the Auckland
Campus of Massey University at Albany in Auckland, New Zealand in the period
13–17 December 2004. The conference was accompanied by two thematic work-
shops, the International Workshop on Automata, Structures and Logic (orga-
nized by B. Khoussainov) and the International Workshop on Tilings and Cel-
lular Automata (organized by M. Margenstern).

The five invited speakers of the conference were: Bruno Courcelle
(Bordeaux, France), Rodney Downey (Wellington, New Zealand), Nataša
Jonoska (Tampa, USA), Anca Muscholl (Paris, France) and Grzegorz
Rozenberg (Leiden, Netherlands).

The Programme Committee thanks the paper reviewers of the conference for
their much appreciated work. These experts were:
Azat Arslanov
Jean Berstel
Cristian S. Calude
Elena Calude
Cezar Câmpeanu
Julien Cassaigne
Bruno Courcelle
E. Csuhaj-Varju
Mark Daley
Sylvain Degeilh
Volker Diekert
Michael J. Dinneen
Michael Domaratzki
Pal Domosi
Rod Downey
Frank Drewes
Allen Emerson
Zoltan Ésik
Henning Fernau
Claudio Ferretti
Vesa Halava
Tero Harju
Ken Hawick

Juraj Hromkovič
Oscar Ibarra
Lucian Ilie
Masami Ito
Heath James
Nataša Jonoska
Lila Kari
Bakh Khoussainov
R. Klempien-Hinrichs
Peter Knirsch
Satoshi Kobayashi
Hans-Joerg Kreowski
Werner Kuich
Chang Li
Markus Lohrey
Maurice Margenstern
Giancarlo Mauri
Melanija Mitrovič
André Nies
Enno Ohlebusch
Alexander Okhotin
Friedrich Otto
Holger Petersen

George Păun
M.J. Perez-Jimenez
Ion Petre
Bala Ravikumar
Bernd Reichel
Antonio Restivo
Branislav Rovan
Sasha Rubin
Yasubumi Sakakibara
Kai Salomaa
F. Sancho-Caparrini
Nicolae Santean
Pavel Semukhin
Ulrich Speidel
Ludwig Staiger
Karl Svozil
Rick Thomas
Nicholas Tran
Gyorgy Vaszil
Todd Wareham
Takashi Yokomori
Sheng Yu
Shyr-Shen Yu

The Programme Committee, consisting of J. Berstel (Paris, France),
C.S. Calude (chair; Auckland, New Zealand), J. Cassaigne (Marseille, France),
V. Diekert (Stuttgart, Germany), M.J. Dinneen (secretary; Auckland, New
Zealand), Z. Ésik (Szeged, Hungary), T. Harju (Turku, Finland), J. Hromkovič
(ETHZ, Switzerland), O. Ibarra (Santa Barbara, USA), M. Ito (Kyoto,
Japan), B. Khoussainov (Auckland, New Zealand), H.-J. Kreowski (Bremen,



Preface VII

Germany), W. Kuich (Vienna, Austria), M. Margenstern (Metz, France),
G. Păun (Bucharest, Romania), I. Petre (Turku, Finland), A. Restivo (Palermo,
Italy), Y. Sakakibara (Tokyo, Japan), K. Salomaa (Kingston, Canada),
L. Staiger (Halle, Germany) and S. Yu (London, Canada), selected 30 pa-
pers (out of 47) to be presented as regular contributions and 5 other special
CDMTCS papers which appeared in the CDMTCS Research Report 252 at
http://www.cs.auckland.ac.nz/CDMTCS/.

Finally, we want to acknowledge the tremendous work and dedication of
the DLT 2004 Conference Committee, which consisted of P. Barry, M. Bowers,
E. Calude (chair), S. Ford, V. Harris, J. Hunter, H. James, P. Kay, A. Lai, N.
Luke, R. McKibbin, L. O’Brien, D. Parsons, H. Sarrafzadeh, C. Scogings, U.
Scogings, I. Sofat, U. Speidel, D. Viehland and Y.-T. Yeh.

The editors also thank Alfred Hofmann, Anna Kramer and Ingrid Beyer
from Springer, Heidelberg, for producing this volume in the Lecture Notes in
Computer Science series.

October 2004 C.S. Calude
E. Calude

M.J. Dinneen
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T. Jurdziński, F. Otto, F. Mráz, M. Plátek . . . . . . . . . . . . . . . . . . . . . . . 237

On Left-Monotone Deterministic Restarting Automata
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Recognizable Sets of Graphs, Hypergraphs and
Relational Structures: A Survey

Bruno Courcelle�

LABRI, Université Bordeaux 1 and CNRS, Talence, France
bruno.courcelle@labri.fr

Abstract. New results on the recognizability of sets of finite graphs, hy-
pergraphs and relational structures are presented. The general framework
of this research which associates tightly algebraic notions (equational and
recognizable sets) and Monadic Second-Order logic (for defining sets and
transformations of graphs, hypergraphs and relational structures) is re-
viewed. The lecture [3] is based on two submitted but nevertheless avail-
able articles [1,4] ; the present text is an informal overview. The numerous
definitions and results can be found in the two articles.

1 Introduction

The description of sets of finite words (called languages) and of their transfor-
mations (called transductions) was the original goal of the Theory of Formal
Languages. This theory now extends its scope to infinite words, to finite and in-
finite trees (modelling finite and infinite algebraic terms), and more recently, to
finite and infinite graphs, hypergraphs and related structures like partial orders
and traces. Unless otherwise specified, we will use “graph” as a generic term cov-
ering directed and undirected, labelled and unlabelled graphs and hypergraphs.
All these objects are conveniently handled as relational structures, i.e., as logical
structures with no function symbol except possibly nullary ones.

In addition to classical tools like grammars, automata and transducers, First-
Order and Monadic Second-Order logic have proved to be useful to describe sets
of words and trees. For dealing with graphs, logic is also essential, not only for
defining sets of graphs but also for defining graph transformations. However,
the variety of types of graphs, and consequently of operations on them (that
generalize the concatenation of words), makes it necessary to use also some
unifying concepts provided by Universal Algebra.

The basic notion of a context-free language can be characterized in terms
of least solutions of equation systems (equivalent to context-free grammars).
That of a regular language can be characterized in terms of congruences with
finitely many classes (equivalent to finite deterministic automata). These alge-
braic definitions are interesting in that they apply to every algebra. They are

� http://www.labri.fr/ courcell

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 1–11, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 B. Courcelle

thus appropriate for dealing with various types of sets of graphs, but they are
useful for other reasons. Context-free sets of graphs can be defined as equational
sets, i.e. as components of least solutions of systems of recursive set equations, in
a much easier way than in terms of graph rewriting sequences. Since there is no
good notion of graph automaton except in very particular cases, the notion of a
finite congruence is the only way to obtain a workable generalization of regularity
to sets of graphs: a recognizable set is a set which is saturated for a congruence
with finitely many classes of each sort (we use many-sorted algebras).

An equational set of graphs can be specified in a readable way by an equation
system. But specifying a recognizable set of graphs by a congruence is no more
convenient than specifying in this way a regular language, because even in sim-
ple cases, congruences tend to have many classes. Monadic Second-Order logic
is here especially useful as a specification language. Since a graph is nothing but
a relational structure, every closed formula, either first-order or second-order
specifies a set of graphs, namely the set of its finite models. (We only consider fi-
nite objects in this survey). Furthermore most graph properties can be expressed
easily by logical formulas. And every set of graphs characterized by a Monadic
Second-Order formula, i.e. a formula where quantified variables denote individ-
ual elements (typically vertices, but also edges) or sets thereof is recognizable.
In particular, basic classes of graphs like trees, connected graphs, planar graphs
are monadic second-order definable.

Hence Monadic Second-Order logic (MS logic in short) is an appropriate lan-
guage forspecifyingsetsofgraphs. Itcanbeseenasanalternativetothenon-existing
notion of graph automaton. Furthermore, it can be used to specify graph transfor-
mations, called MS transductions that are as useful for studying sets of graphs as
are rational transductions for languages. Applications to the construction of linear
algorithms for hard (NP complete) problems restricted to certain equational sets of
graphs substanciate the claim of usefulness of Monadic Second-Order logic.

We hope to convince the reader that the algebraic notions of a recognizable
and of an equational set of graphs on the one hand, and the logical notions based
on MS logic on the other build a coherent and robust framework for extending to
graphs the notions and results of Formal Language Theory. The following table
summarizes the main results. (MST means MS transduction).

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

EQ Equation
systems,
val(REC(Terms))

MST(Trees) Union,
∩Rec,
Homomorphisms,
MST

REC Finite
Congruences

MS-definable
(⊂ REC)

Boolean
operations,
Inverse
homomorphisms,
Inverse MST
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2 Notions from Universal Algebra

For dealing with graphs one needs to use many-sorted algebras, with countably
many sorts. A sort is here a finite set of labels (which is a subset of a fixed count-
able set of labels). These labels are used to specify in a nonambigous way “graph
concatenation” operations. Since the combinatorial structure of graphs is much
more complicated than that of words, one cannot limit oneself to concatenation
operations (or graph construction operations) based on a uniformly bounded
number of labels. (One can actually generate all finite graphs from 6 operations
with 2 sorts in a somewhat artificial way but the interesting algorithmic results
discussed below do not work for these operations. See [4].)

In a many-sorted algebra, an equational set is a set of elements of the same
sort that is a component of the least solution of a (finite) system of recursive set
equations. An example of such a system is:

{X = f(X,Y ) ∪ {a};Y = g(X,Y, Y ) ∪ f(Y, Y ) ∪ {b}},

where X and Y denote sets and f and g denote the set extensions of functions
belonging to the signature. A recognizable set is a set of elements of the same
sort, that is a union of classes for a finite congruence, i.e., a congruence such that
any two equivalent elements are of the same sort and which has finitely many
classes of each sort. (See Courcelle [2]). These two notions depend on the signa-
ture. We refer to F -equational and to F -recognizable sets, forming the classes
EQ(F ) and REC(F ) respectively, when we need to specify the signature F .

In some cases, the notion of a recognizable set somehow degenerates. If the
signature is “poor” (for example if it consists only of constants and a finite set
of unary operations closed under composition), then every set is recognizable. If
on the opposite it is “too rich” then the only recognizable sets are the empty set
and the set of all elements of a same sort. This is the case of the set of positive
integers equipped with the successor and the predecessor function.

In every algebra, even having an infinite signature, the following properties
hold:

Property 1: The class of recognizable sets is closed under union, intersection,
difference and inverse homomorphisms. In particular, for every finite subsig-
nature F of the considered signature, the set of (finite) F -terms, the value of
which belongs to a recognizable set is recognizable, hence is definable by a finite
deterministic tree-automaton.

Property 2: The class of equational sets is closed under union, homomorphisms,
and intersection with recognizable sets ; it is closed under the operations of the
signature.

Property 3: One can decide the emptiness of an equational set given by a
system of equations.

Property 4: A set is equational iff it is the set of values of a recognizable set
of terms over a finite subset of the signature.
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For two signatures F and K on a same set M , such that F is a subsignature
of K, we get immediately from the definitions.

Property 5: Every F -equational set is K-equational. Every K-recognizable set
is F -recognizable.

We will say that the signatures F and K are equivalent if the corresponding
classes of equational and recognizable sets are the same. If K is F enriched with
operations that are defined by finite F -terms, then F and K are equivalent. But
there are examples of equivalent signatures not of this type. Consider the set
of words over a finite alphabet, where F consists of concatenation, empty word
and letters, and K is the same together with the mirror image operation. Then
the signatures F and K are equivalent, but the mirror image is not expressible
as a composition of operations of F .

We will be interested by the comparison of various signatures of graph op-
erations. We will see that no more than three signatures have to be considered,
each of them having many equivalent variants. This indicates the robustness of
this algebraic approach.

Algorithmic applications of recognizability can be described from the above
algebraic properties, using the fact that an MS definable set of graphs is recog-
nizable. Let us consider an equational set L given by an equation system. Let
K be a recognizable set which is “effectively given”, for instance by means of
a homomorphism into an algebra each domain of which is finite, or by an MS
formula ϕ. By Property 2, the set L ∩K is an equational set for which one can
construct an equation system. It follows from Property 3 that one can decide the
emptiness of L∩K. By applying this to the case of an equational set of graphs
L and a set K defined as the set of finite models of a closed MS formula ϕ, one
obtains that one can decide whether there exists in L a graph satisfying ϕ. This
decision problem, called the Monadic Second-Order satisfiability problem for L
is non trivial: it is undecidable L is the (non-equational) set of all finite graphs,
and even for first-order formulas ϕ.

By using the second assertion of Property 1 one can decide in linear time if
an F -term (where F is finite subsignature of the considered global signature) has
for value an object belonging to the recognizable set K defined by an MS formula
ϕ. It follows that if a graph G in L is given by a term over the finitely many
operations that occur in the defining system for L (say a derivation tree of G
relative to the context-free graph grammar represented by the equation system)
then one can decide in time proportional to the size of this term whether G
satisfies the MS formula ϕ. This applies to NP complete problems expressible by
MS formulas, like 3-vertex colorability.

3 Graph Operations

The use of algebraic notions is based the definition of the operations on graphs
that form the signature. There are actually two main (non-equivalent) signatures
of interest, that we call HR and VR because the corresponding equational sets
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have been defined independently and previousy by “Hyperedge Replacement”
Context-free Graph Grammars and, respectively, by context-free graph gram-
mars based on “Vertex Replacement”. (See the book edited by G. Rozenberg
on graph grammars [7]). They are robust in the sense that many variants of
the definitions yield the same equational sets. Furthermore, the corresponding
classes of equational sets are closed under MS transductions. This is analogue to
the closure of the class of context-free languages under rational transductions.

The HR operations deal with graphs and hypergraphs having distinguished
vertices called sources designated by labels. (There is only one source for each
label.) The HR operations are the parallel composition of two graphs or hyper-
graphs (one takes the disjoint union of the two and one fuses the sources with
same labels), operations that change the labels of sources, and operations that
“forget” sources (forgetting the a-source means that the vertex designated by a is
no longer distinguished, but is made “ordinary”). Basic graphs or hypergraphs
are those with a single edge or hyperedge (possibly with loops), and isolated
vertices.

The VR operations deal with graphs (not with hypergraphs) with labelled
vertices. Each vertex has one and only one label but several vertices may have
the same label. The VR operations are the disjoint union of two labelled graphs,
some operations that modify labels in a uniform way (every vertex labelled by p
is relabelled by q) and operations that add edges between every vertex labelled
by p and every vertex labelled by q, for fixed vertex labels p and q. (These last
operations produce graphs having complete bipartite subgraphs Kn,m (with n+
m vertices) where n is the number of p-labelled vertices and m is the number of
q-labelled vertices. Since n and m are not bounded, such graphs have unbounded
tree-width and the VR operations cannot be replaced by compositions of HR-
operations.) The basic graphs are those with a single vertex.

In both cases, every graph (or hypergraph in the case of HR) can be gener-
ated by these operations by using one label for each vertex. By bounding the al-
lowed number of labels, one obtains particular classes of graphs and hypergraphs
forming two infinite hierarchies. We obtain also the families of HR-equational,
VR-equational, HR-recognizable and VR-recognizable sets of graphs and hyper-
graphs. They correspond to the families of context-free and regular languages,
but we have two notions in the case of graphs.

There are other significant differences with the case of words. The set of
all words on a fixed finite alphabet is context-free, whereas the set of all finite
graphs (say, of simple undirected unlabelled graphs to get a precise statement) is
neither HR-equational nor VR-equational. This is due to the necessity of using
infinitely many operations to generate all graphs (whereas the unique operation
of concatenation suffices to generate all words). Since an equation system is by
definition finite, none can define all graphs. From this observation, it follows that
a set of graphs may be non-HR-equational for two reasons: either because it has
unbounded tree-width (this the case of the set of finite planar graphs) or because
it has an “irregular” internal structure (this is the case of the set of strings, the
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length of which is a prime number). Note however that classical non-context-free
languages like anbncn are equational as sets of vertex labelled graphs.

Classes of recognizable sets of graphs (here we discuss labelled, directed or
undirected graphs, not hypergraphs) are associated with the signatures HR and
VR. Again, due to the infiniteness of the signatures, some properties of recogniz-
able sets of words do not extend to graphs. In particular there are uncountably
many recognizable sets (every set of square grids is HR-recognizable as well as
VR-recognizable ; see [4]).

There exist two complexity measures on graphs, called tree-width and clique-
width defined respectively as the minimum number of labels necessary to con-
struct the considered graphs or hypergraphs with HR and VR operations. A
set of graphs has bounded tree-width (resp. bounded clique-width) iff it is a
subset of an HR-equational (resp. of a VR-equational) set. Tree-width has been
introduced independently of graph grammars by Robertson and Seymour, and
this parameter is essential in the theory of parametrized complexity developed by
Downey and Fellows [5]. Clique-width is also useful for constructing polynomial
algorithms for hard problems for particular classes of graphs.

Up to now we have only presented two signatures HR and VR. The first one
concerns graphs stricto sensu as well as hypergraphs, whereas the second con-
cerns only graphs or slightly more generally, binary relational structures (i.e.,
structures with relations of arity 1 and 2). We will now consider general rela-
tional structure, which correspond exactly to directed, ranked, hyperedge-labelled
hypergraphs, simply called hypergraphs in the sequel. The arity of a hypergraph
is the maximal arity of the (relation) symbols labelling its hyperedges.

For dealing with them, we introduce a many-sorted signature STR. We fix a
set of relation symbols with countably many relations of each arity. Every finite
subset Σ of this set is a sort and the corresponding domain is the set STR(Σ)
of finite Σ-structures. The operations are the disjoint union and all the unary
operations that transform a structure into another one by means of quantifier-
free conditions. The transformations performed by these operations can delete
elements (for example, in a graph one may want to remove all vertices incident
to no edge or loop), and/or redefine relations (for example, for defining the
edge-complement of a graph). The unary VR operations are of this latter form.
The HR operations also, if we denote “sources” by nullary function symbols.
Technical details are omitted here.

Although there exist infinitely many quantifier-free formulas written with
finitely many variables and relation symbols, there are only finitely many quanti-
fier-free formula up to logical equivalence, and this equivalence is decidable. It
follows that there are only finitely many quantifier-free operations STR(Σ) −→
STR(Γ ) where Σ and Γ are finite sets of relations. We obtain the inclusions of
signatures:

HRg ⊆ VR ⊆ STR

where HRg denotes the restriction of HR to graphs obtained by taking graphs
and not hypergraphs as basic objects. Then follow the inclusions:

EQ(HRg) ⊆ EQ(VR) ⊆ EQ(STR)
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and the reverse inclusions for the corresponding classes of recognizable sets of
graphs by Property 5.

The inclusion EQ(HRg) ⊆ EQ(VR) is proper: the set of all cliques is
VR-equational (easy to see ; cliques have clique-width 2) but not HR-equational
because cliques have unbounded tree-width. If a set of graphs is VR-equational
but is “without large complete bipartite subgraphs” which means that for some
large enough n, no graph in L has a subgraph isomorphic to Kn,n then it is
HR-equational. The intuition about this result is the following: the operation
in the VR signature which is not expressible in terms of HR operations is that
which adds to a graph edges forming a complete bipartite subgraph. If L has no
graph containing large Kn,n’s, this means that this operation is not used in a
crucial way hence that each of its occurrence can be replaced by a composition
of HR-operations.

A result proved in [4] establishes a similar result for recognizable sets of
graphs. First the inclusion REC(VR) ⊆ REC(HR) is proper because every
set of cliques is HR-recognizable, but the set of cliques of size n such that n
belongs to a set of positive integers which is not recognizable (like the set of
prime numbers), is not VR-recognizable. Second, we have:

Theorem 1 [4]: If set of graphs without large complete bipartite subgraphs is
HR-recognizable, then it is VR-recognizable.

Hence the same combinatorial condition collapses simultaneously the two
proper inclusion of EQ(HR) in EQ(VR) and of REC(VR) in REC(HR). However,
the proofs of the two results are different.

We now discuss the inclusion of VR in STR. We have the following:

Theorem 2 [4]: A set of graphs is VR-equational iff it is STR-equational, and
it is VR-recognizable iff it is STR-recognizable.

The first result is a direct consequence of characterizations of VR-equational
and STR-equational sets in terms MS transductions in Theorem 7 below. The
second one is proved in [4]. We only explain here the meanings of these results.

To generate graphs by means of VR-operations, one uses only structures over
the following relation symbols: a single binary relation edg representing edges
linking vertices, and an unbounded number of unary auxiliary relations for rep-
resenting vertex labels. These auxiliary relations need not occur in the generated
graphs. They are only useful at intermediate stages of the generation process to
establish edges. Among the quantifier-free unary operations used in STR are
operations that may delete relations. This means that if one uses the opera-
tions of STR to generate graphs, some intermediate generated objects may be
hypergraphs (represented by non-binary relational structures). One might think
that because of this richer signature, the family EQ(STR) would contain sets
of graphs not in EQ(VR), but this not the case. The signature VR is “strong
enough” to yield the same equational sets as the apparently more powerful sig-
nature STR, which uses domains (sets of hypergraphs) not in the VR algebra of
graphs. Hence in order to generate graphs represented by relational structures
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with one relation of arity 2, the auxiliary relations may be limited to arity 1.
A similar statement can be made for recognizable sets: to establish that a set
of graphs is STR-recognizable, it is enough to produce a congruence for the
VR-operations, without having to extend it to a congruence on all the domains
STR(Σ) for all Σ’s.

The above discussion showing that for generating graphs, one need not use
auxiliary relations of arity more than 1 can be repeated for each maximal arity
or even size: for generating hypergraphs with hyperedges with at most n distinct
vertices, one need not use auxiliary hyperedges of arity more than n− 1. This is
formally defined and proved in [1]. Letting STRn denote the restriction of STR
to relations (and the corresponding domains and operations) of arity at most n
we get the following statement:

Theorem 3 [1]: A set of hypergraphs of arity at most n is STRn-equational iff
it is STR-equational. It is STRn-recognizable iff it is STR-recognizable.

Hence, with respect to sets of hypergraphs of maximal arity n, the full sig-
nature STR is equivalent to STRn, its restriction to structures of arity at most
n. Stronger formulations and their proofs can be found in [1].

4 Monadic Second-Order Logic and Graph Properties

Sets of graphs can be specified either recursively, in terms of base graphs and
application of operations: this is what yields an equation system. But they are
also frequently specified by characteristic properties. We will use logical formulas
to write formally these properties, which is possible since a graph can be defined
as or represented by a logical structure with relations representing adjacency or
incidence.

First-Order logic can only express local properties like bounds on the degrees
of vertices, hence is here of limited interest. But Monadic Second-Order logic,
(MS logic in short) i.e., the extension of First-Order logic with variables denot-
ing subsets of the domains of the considered structures is quite powerful. It can
express both coloring properties (for instance that a graph is 3-vertex colorable,
an NP complete property), and path properties (like connectivity, existence of
cycles, planarity via Kuratowski’s theorem). But a property based on the exis-
tence of bijections, like the existence in a graph of a nontrivial automorphism,
is provably not MS expressible.

A fundamental theorem says that:

Theorem 4: Every MS definable set of graphs is VR-recognizable. More gener-
ally, every MS-definable set of relational structures is STR-recognizable.

The algorithmic applications of recognizability reviewed in the first section
are based on this result. One can actually improve Theorem 4 and its algorith-
mic consequences as follows. If instead of representing a graph by a relational
structure, the domain of which is the set of vertices and which has a binary
relation representing the edges, we use its incidence graph, i.e., the relational
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structure the domain of which consists of vertices and edges, and equipped with
an incidence relation, then, MS logic becomes more expressive because one can
denote sets of edges by set variables. The same can be done for hypergraphs,
and we denote by MS2 the use of MS logic with this representation of graphs
or hypergraphs. That a graph has a Hamiltonian circuit is MS2 expressible but
provably not MS expressible. Then we get the following result:

Theorem 5: Every MS2 definable set of graphs or hypergraphs is HR-
recognizable.

If we compare Theorems 4 and 5 in the perspective of their algorithmic ap-
plications, we can see that Theorem 5 concerns more properties, namely the
MS2 definable properties instead of the more restricted MS definable ones, but
less families of graphs, namely those of bounded tree-width (generated by fi-
nite subsignatures of HR) instead of bounded clique-width (generated by finite
subsignatures of VR).

5 Monadic Second-Order Transductions

Transformations of words and trees are based on finite automata, equipped with
output functions (sequential machines, tree-transducers), or on rational expres-
sions and homomorphisms (rational transductions between languages). Since
for graphs we have neither automata nor rational expressions, we must base
graph transformations on another model. Monadic Second-Order logic offers the
appropriate alternative.

An MS transduction: STR(Σ) −→ STR(Γ ) is a partial multivalued function
specified by a finite sequence of MS formulas, using (possibly) set variables
called parameters, and forming its definition scheme. A structure S in STR(Σ)
is transformed into a structure T in STR(Γ ) as follows: one select values for
the parameters that satisfy a formula, the first one in the definition scheme.
Then one builds a structure S′ consisting k disjoint “marked” copies of S (k is
fixed in the definition scheme). The output structure T is defined inside S′ by
restricting the domain and by defining its Γ−relations from the Σ−relations in
S′ and the “marks”. These restrictions and definitions are done by MS formulas
depending on the parameters. The transformation is multivalued because in gen-
eral several choices of parameters can be made. An MS transduction defined by
a parameterless definition scheme is a partial function. An important difference
with rational transductions is the fact that the inverse of an MS transduction
is not always an MS transduction whereas that of a rational transduction is a
rational transduction. With respect to the equational and recognizable sets, MS
transductions behave like homomorphisms as we will see.

The fundamental property of MS transductions is, with the above notation:

Theorem 6: The monadic second-order properties of the output structure T
can be expressed by monadic second-order formulas in the input structure S in
terms of the parameters used to define T from S.
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It follows that the composition of two MS transductions is an MS transduction
(a result much more important than the closure on inverse). It follows also that
if a set of structures has a decidable monadic second-order satisfiability problem,
then so has its image under an MS transduction.

The mapping from a term in T (HR) (the set of finite HR-terms), T (V R) or
T (STR) to the corresponding graph or hypergraph is an MS transduction. It
follows that an equational set of graphs is the image under an MS transduction
of a recognizable set of terms, equivalently (we omit details) of the set of finite
binary trees. This result have a very important converse:

Theorem 7: If a set of graphs (resp. a set of hypergraphs) (resp. the set of
incidence graphs of a set L of hypergraphs) is the image of the set of finite
binary trees under an MS transduction, then this set is VR-equational (resp. is
STR-equational) (resp. is HR-equational).

This theorem is somewhat similar to the one saying that the context-free
languages are the images under rational transductions of the Dyck language,
which is actually a coding of trees by words. An important consequence is the
following:

Theorem 8: The image of a VR-equational set (resp. of an STR-equational set)
(resp. of an HR-equational set) under an MS transduction of appropriate type
is VR-equational (resp. STR-equational) (resp. HR-equational).

”Appropriate” means that it produces graphs from graphs in the first case,
and that it transforms hypergraphs through their incidence graphs in the third
case. Hence, with respect to equational sets, MS transductions behave like ho-
momorphisms. They do the same with respect to recognizable sets since we have:

Theorem 9 [1]: The inverse image of an STR-recognizable set under an MS
transduction is STR-recognizable.

This result is not very surprizing, because we know already from Theorem
6 that the inverse image of an MS definable set is MS definable, which yields
Theorem 9 for those particular recognizable sets that are MS definable. However
it shows how algebraic and logical notions are tightly linked.

6 Open Questions and Research Directions

We only mention a few questions related to the notions discussed in this overview.

1. Which quantifier-free operations on relational structures preserve recogniz-
ability?

2. Can one define a complexity measure on relational structures generalizing
clique-width and that is linked to the signature STR or rather, to a subsig-
nature equivalent to it like STRn?

3. How can one enrich the signature STR into a larger signature equivalent to
it?
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Concerning Question 1: Not all quantifier-free operations preserve recogniz-
ability: the operation : STR(Σ) −→ STR(Σ − {R}) that deletes a relation R
of arity at least 2 does not. Concerning question 2, clique-width is a complexity
measure linked to VR, which is a subsignature of STR equivalent to it for graphs.
Answers to question 3 can be found in [1] but they do not close the question.
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Abstract. Recently there have been some new initiatives in the field of
parameterized complexity. In this paper, we will report on some of these,
concentrating on some open questions, and also looking at some current
investigations aimed towards applying ideas of parameterized complexity
in the field of online model theory.

1 Introduction

Paremeterized complexity was developed as a tool to address practical issues in
algorithmic complexity. The basic idea is that the combinatorial explosion that
occurs in exact algorithms for many intractable problems can be systematically
addressed by seeking parameters that can be exploited to contain this explosion.
The main idea is that for natural, practical problems often there are one, or
more, parameters that are naturally “small”, and if it is these that “make” the
problem intractable then, for a limited range of these parameters, the problem
can be efficiently solved.

For example, suppose we are analyzing data arising as, for instance, the
conflict graph of some problem in computational biology. Because of the nature
of the data we know that it is likely the conflicts are at most about 50 or so,
but the data set is large, maybe 108 points. We wish to eliminate the conflicts,
by identifying those 50 or fewer points. Let’s examine the problem depending on
whether the identification turns out to be a dominating set problem or a vertex
cover problem. These are the classic two, opposing, examples usually quoted
here.

Dominating Set. Essentially the only known algorithm for this problem is to
try all possibilities. Since we are looking at subsets of size 50 or less then we
will need to examine all (108)50 many possibilities. Of course, this is completely
impossible.

Vertex Cover. There is now an algorithm running in time O(1.286k + k|G|)
([12]) for determining if a graph G has a vertex cover of size k. This has been
implemented and is practical for |G| of unlimited size and k up to around 400
[41].

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 12–26, 2004.
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The issue is the manner by which the running time for a fixed k depends on
that k. Critically, is k in the exponent of the size of the problem, or independent
of the size of the problem? Consider the situation of a running time of Ω(nk)
vs 2kn. If k is small, then a running time of 2kn may be feasible, even for very
large n, while a running time of Ω(nk) will be impractical.

There are myriads of natural implicit, and explicit, parameters which can be
exploited to obtain problems admitting this kind of exponential in the parameter
only running time behaviour. These include familiar graph-width metrics such
as pathwidth, treewidth, and cliquewidth, as well as logical restrications.

To investigate the complexity of such parameterized problems, we use the
framework of parameterized complexity theory, introduced by Downey and Fel-
lows [18]. We review the main concepts and definitions of the theory here.

We remind the reader that a parameterized language L is a subset of Σ∗×Σ∗.
If L is a parameterized language and 〈σ, k〉 ∈ L then we refer to σ as the main
part and k as the parameter. The basic notion of tractability is fixed parameter
tractability (FPT). Intuitively, we say that a parameterized problem is fixed-
parameter tractable (FPT) if we can somehow confine the any “bad” complexity
behaviour to some limited aspect of the problem, the parameter. Formally, we
say that a parameterized language, L, is fixed-parameter tractable if there is a
computable function f , an algorithm A, and a constant c such that for all k,
〈x, k〉 ∈ L iff A(x, k) = 1, and A(x, k) runs in time f(k)|x|c (c is independent
of k). For instance, k-Vertex Cover, introduced above, is solvable in time
O(|x|). On the other hand, for k-Turing Machine Acceptance, the problem
of deciding if a nondeterministic Turing machine with arbitrarily large fanout has
a k-step accepting path, we are in the same situation as for k-Dominating Set.
The only known algorithm is to try all possibilities, and this takes time Ω(|x|k).
This situation, akin to NP -completeness, is described by hardness classes, and
reductions. A parameterized reduction, L to L′, is a transformation which takes
〈x, k〉 to 〈x′, k′〉, running in time g(k)|x|c, with k 
→ k′ a function purely of k.

Downey and Fellows [18] observed that these reductions gave rise to a hier-
archy called the W -hierarchy.

FPT ⊂ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆ . . . .

The core problem for W [1] is k-Turing Machine Acceptance, which is
equivalent to the problem Weighted 3Sat. The input for Weighted 3Sat
is a 3CNF formula, ϕ and the problem is to determine whether or not ϕ has a
satisfying assignment of Hamming weight k. W [2] has the same core problem
except that ϕ is in CNF form, with no bound on the clause size. In general,
W [t] has as its core problem the weighted satisfiability problem for ϕ of the
form “products of sums of products of ...” of depth t. It is conjectured that the
W -hierarchy is proper, and from W [1] onwards, all parametrically intractable.

There have recently been exciting new methods developed for establishing
parameterized tractability. In this paper we will not address these. Instead, we
point towards Rolf Niedermeier’s survey [37], as well as Fellows’ survey [22], and
Downey [16]. These is an upcoming book [38] which will be devoted to methods
of parameterized tractability.
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There have also been some new developments in the application of parame-
terized intractability to gaining understanding of when PTAS’s are likely to be
feasible. These, and similar applications, highlight the use of parameterized com-
plexity for exploring the boundary of feasibility within polynomial time. There
have been very interesting developments exploring the running times of exact
exponential algorithms, including use of the “Mini-” classes of Downey et. al.
[17]. These have been used, in particular, by Fellows and his co-authors. This
area is very promising and is the basis for an upcoming Dahstuhl meeting in
2005, as well as the recently held International Workshop in Parameterized and
Exact Computation. We will examine this material in Section 2.

In Section 3, we examine new classes generated by the notion of EPT, intro-
duced by Flum, Grohe and Weyer [25]. In this paper, our first major goal will be
to examine these new notions and to mention a number of natural open questions
that they suggest. A solution to any of these problems would be significant and
the material gives us an interesting case study in a more-or-less neglected arena:
structural parameterized complexity. We will examine these ideas in Section 3.

The last goal of this article is to articulate a new program of the authors [19,
20], devoted to applying the ideas of parameterized complexity, and topological
graph theory, to online algorithms and online model theory. Our underlying idea
is to provide a proper theoretical foundation for the study of online algorithms
on online structures. As a case study we will look at online colourings of online
graphs. Again, we will highlight a number of open questions in this area. This
section is especially relevant to the present conference in view of the interest in
automatic structures (such as Rubin’s Thesis [39]). Here we have structures, such
as graphs, whose domains and operations are presented by automata, and these
are natural examples of online structures since the domains and other aspects
of their diagrams are given one point at a time. We expand on this in Section 4.

2 M [1], ETH and PTAS’s

2.1 PTAS’s

Let’s re-examine the notion of P : classical polynomial time. Classical polynomial
time allows for polynomials which can in no way be regarded as “tractable”. For
instance, a running time of n9000 is certainly not feasible.

This fact has certainly been recognized since the dawn of complexity theory.
The main argument used is that P is a robust class (in its closure properties)
and that “practical” problems in P have feasible running times. Certainly, in the
early 70’s this point of view was correct, but recently developed general tools for
establishing times in P have given rise to bad running times.

When you are given some problem, a classical approach is to either find a
polynomial time algorithm to solve it, or to demonstrate that it is NP-hard. The
latter would then suggest that no exact polynomial time algorithm exists.

The question now is, suppose that you have a problem that is in P, but with
a running time that is hideous. What can you do? Parameterized complexity
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has been shown to be useful here. This is particularly true for bad running
times in PTAS’s (polynomial time approximation schemes). As per Garey and
Johnson [28], polynomial time approximation schemes (PTAS’s) are one of
the main traditional methods used for battling intractability. Many ingenious
polynomial time approximation schemes have been invented for this reason.
Often, the wonderful PCP theorem of Arora et al. [6] shows that no such
approximation exists (assuming P �= NP ), but sometimes they do. Let’s look at
some recent examples, taken from some recent major conferences such as STOC,
FOCS and SODA. (See Downey [16], and Fellows [22] for more examples.)

• Arora [4] gave a O(n
3000

ε ) PTAS for Euclidean Tsp
• Chekuri and Khanna gave a O(n12(log(1/ε)/ε8)) PTAS for Multiple Knap-

sack

• Shamir and Tsur [40] gave a O(n22
1
ε −1)) PTAS for Maximum Subforest

• Chen and Miranda gave a O(n(3mm!)
m
ε

+1
) PTAS for General Multipro-

cessor Job Scheduling
• Erlebach et al. gave a O(n

4
π ( 1

ε2
+1)2( 1

ε2
+2)2) PTAS for Maximum Indepen-

dent Set for geometric graphs.

Table 1 below calculates some running times for these PTAS’s with a 20%
error.

Table 1. The Running Times for Some Recent PTAS’s with 20% Error

Reference Running Time for a
20% Error

Arora [4] O(n15000)

Chekuri and Khanna [11] O(n9,375,000)

Shamir and Tsur [40] O(n958,267,391)

Chen and Miranda [14] > O(n1060
) (4 processors)

Erlebach et al. [21] O(n523,804)

After the first author presented the table above at a recent conference (Downey
[16]), one worker from the audience remarked to him “so that’s why my code
did not work,” having tried to implement the Chen-Miranda algorithm!

Now sometimes the algorithms can be improved. For instance, Arora [5] also
came up with another PTAS for Euclidean Tsp, but this time it was nearly
linear and practical. The crucial question is: having found the algorithms above
and being unable to find better algorithms, how do we show that there are no
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practical PTAS’s? Remember that we are in P, so lower bounds are hard to
come by.

If the reader studies the examples above, they will realize that a source of the
appalling running times is the 1

ε in the exponent. We can define an optimization
problem Π that has an efficient P -time approximation scheme (EPTAS) if it
can be approximated to a goodness of (1 + ε) of optimal in time f(k)nc where
c is a constant. Now, if we set k = 1/ε as the parameter, and then produce
a reduction to the PTAS from some parametrically hard problem we can, in
essence, demonstrate that no EPTAS exists.

Here is one early result in this program:

Theorem 1 (Bazgan [7], also Cai and Chen [8]). Suppose that Πopt is
an optimization problem, and that Πparam is the corresponding parameterized
problem, where the parameter is the value of an optimal solution. Then Πparam

is fixed-parameter tractable if Πopt has an EPTAS.

Here is one recent application of Bazgan’s Theorem taken from Fellows, Cai,
Juedes and Rosamond [9]. In a well-known paper, Khanna and Motwani intro-
duced three planar logic problems towards an explanation of PTAS-
approximability. Their suggestion is that “hidden planar structure” in the logic
of an optimization problem is what allows PTASs to be developed (Khanna and
Motwani [32].) One of their core problems was the following.

Planar Tmin
Input: A collection of Boolean formulas in sum-of-products form, with

all literals positive, where the associated bipartite graph is planar
(this graph has a vertex for each formula and a vertex for each
variable, and an edge between two such vertices if the variable
occurs in the formula).

Output: A truth assignment of minimum weight (i.e., a minimum number of
variables set to true) that satisfies all the formulas.

Theorem 2 (Fellows, Cai, Juedes and Rosamond [9]). Planar Tmin is
hard for W [1] and therefore does not have an EPTAS unless FPT = W [1].

Fellows et al. [9] also show that the other two core problems of Khanna and
Motwani [32] are W [1] hard and hence have no EPTAS’s.

For most of the problems in Table 1 it is open which have EPTAS’s. It is an
open project to understand when problems such as those in [2], can have real
EPTAS’s rather than just PTAS’s which have unrealistic running times. Recently
Chen, Huang, Kanj, and Xia [13] have made significant progress by provding
an exact parameterized classification for problems with fully polynomial time
approximation schemes, for a wide class of problems (scalable problems):

Theorem 3 (Chen et. al. [13]). Suppose that Q is a scalable NP optimization
problem. Then Q has a FPTAS iff Q is in the class of PFTP of parameterized
problems which can be solved by an algorithm whose running time is polynomial
in both |x| and k.
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It seems reasonable that something of a similar ilk will be true for PTAS’s.
There are a number of similar applications using parameterized complexity
for practical lower bounds in polynomial time, for example, Alekhnovich and
Razborov [3].

2.2 ETH

The previous section demonstrates that, using parameterized complexity, we can
address the classical issue of polynomial time approximation and whether there
is an efficient polynomial time approximation. Recently, the increased compu-
tational power available has shown that there are a lot of problems for which
exponential time algorithms can be useful in practice. This is particularly the
case if the problem has an exponential time algorithm which is significantly bet-
ter than DTIME(2o(n)). However, there seems to be a “hard core” of problems
for which, not only do we think that there is no polynomial time algorithm ad-
mitted, but, in fact, that there is no subexponential time one either. This is the
exponential time hypothesis first articulated in Impagliazzo and Paturi [29].

• (ETH) n-variable 3-Satisfiability is not solvable in DTIME(2o(n)).

Again, it has been shown that parameterized techniques are extremely useful
in showing that problems are likely not in DTIME(2o(n)). Actually, the idea
that subexponential time is intimately related to parameterized complexity is
relatively old, going back to Abrahamson, Downey and Fellows [1]. However,
there has been a lot of interest in this area recently, especially after the realization
of the central importance of the Sparsification Lemma of Impagliazzo, Paturi
and Zane [30] by Cai and Juedes [10]. As we will see, showing that a problem
is W [1]-hard would likely be enough (depending on the reduction). To address
these issues, Downey, Estivill-Castro, Fellows, Prieto-Rodriguez and Rosamond
[17] introduced a new set of classes, the Mini-classes. Here the problem itself is
parameterized. The notion is most easily explained by the following example.

Mini-3Sat
Input: A 3-CNF formula ϕ.
Parameter: k.
Question: If ϕ has size ≤ k log n is it satisfiable?

The point here is that the solution of the problem is akin to classical NP-
completeness in that we are asking for an unrestricted solution to a restricted
problem. We can similarly miniaturize any combinatorial problem. For instance,
it is easy to see that Mini-Clique is FPT. To remain in the mini-classes you
need to make sure that the reductions are small. The core machine problem is a
circuit problem: Mini-Circuit Sat. This allows us to generate the class M [1]
of miniaturized problems. It is not hard to show that Mini-Independent Set
and Mini-Vertex Cover are M [1]-complete (Cai and Juedes [10], Downey et
al. [17].) It is unknown if Mini-Turing Machine Acceptance is M [1] com-
plete, as the usual reductions are not linear, and we know of no such reduction.
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It is not hard to show that FPT ⊆ M [1] ⊆ W [1]. The relevance of this class to
subexponential time is the following.

Theorem 4 (Cai and Juedes [10], Chor, Fellows and Juedes [23],
Downey et. al. [17]). The M [1]-complete problems such as Mini-3Sat are
in FPT iff the exponential time hypothesis fails.

For a recent survey summarizing this material with new proofs, we refer the
reader to Flum and Grohe [24].

3 EPT and FPT

Now, let’s re-examine the notion of fixed parameter tractability. Recall that L ⊂
Σ∗ × Σ∗ is FPT iff there is an algorithm deciding 〈x, k〉 ∈ L running in time
f(k)|x|c, with f an arbitary (computable) function, and c fixed, independent of
k.

The criticisms of polynomial time can also be leveled, perhaps with even more
force, at the notion of FPT, since the function f can be arbitary. Remember,
one of the claims of the theory is that it tries to address “practical” complexity.
How does that claim stack up? One of the key methods of demonstrating ab-
stract parameterized tractability is the use of logical methods such as Courcelle’s
Theorem. Here, one demonstrates that a given problem is for graphs of bounded
treewidth and is definable in monadic second order logic, perhaps with count-
ing. Then Courcelle’s Theorem says the problem is linear time fixed-parameter
tractable.

However, FPT is only really a general first approximation to feasability. The
kinds of constants we get from applying Courcelle’s Theorem are towers of 2’s,
roughly of the order of the number of alternations of the monadic quantifiers.
This was proven by Frick and Grohe [26]. These types of constants stand in
contrast to constants obtained using elementary methods such as bounded search
trees, and crown reduction rules and kernelization. Here, the parameter constants
are managable, more like 2k.

Flum, Grohe, and Weyer [25] recently introduced a new class to perhaps
better address when a problem is likely to have a practical FPT algorithm.

Definition 1 (Flum, Grohe and Weyer [25]). A parameterized problem is
in EPT iff it is solvable in time 20(k)|x|c.

For example, k-Vertex Cover is in EPT. Now the surprise. The reductions
that Flum, Frick and Grohe use are not parameterized ones. The appropriate
parameterized reductions to keep within the class would be linear in k, and FPT
in |x|. Flum, Frick and Grohe introduced their notion of an EPT reduction as
being one that is not parametric, rather

L ≤EPT L′ iff 〈x, k〉 ∈ L iff 〈x′, k′〉 ∈ L′,

where x 
→ x′ in time 20(k)|x|c, but

〈k, x〉 
→ k′ has k′ ≤ k log |x|.
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This means that, as the size of the problem grows, the slice of L′ used for
the reduction can slowly grow. Clearly, it is easy to prove that the two notions
of reduction are distinct. Technically, the addition of the log |x| in the reduction
allows for counters to be used in the reduction.

Frick, Flum and Grohe then go on to define a new hierarchy based upon this
reduction notion called the E-hierarchy,

EPT ⊆ E[1] ⊆ E[2] ⊆ . . . ,

which is robust for t ≥ 2.

What is the point of all of this? Frick, Flum and Grohe demonstrate that a
number of FPT problem lie at higher levels of this hierarchy and are therefore
likely not EPT. For instance, classes of model-checking problems which Flum
and Grohe showed did not have FPT algorithms with elementary parameter
dependence are complete for various levels of the class. Another example of the
phenomenom is the following.

Theorem 5 (Frick, Grohe and Weyer [25]). k-Vapnik-Chervonenkis Di-
mension is complete for E[3] under EPT reductions.

We remark that k-Vapnik-Chervonenkis Dimension was known to be
W [1] complete under FPT reductions.

There are a number of very important FPT problems which have no known
FPT algorithms which are also single exponential in the parameter. Showing that
any of the following is likely not EPT would be very significant: k-Treewidth,
k-Branchwidth, and k-Cutwidth. The same is true for many problems which
only have FPT algorithms via Courcelle’s Theorem or have been proven FPT
(or PTIME) by treewidth methods.

An interesting technical question is whether k-Independent Set is in M [1]
under EPT reductions. And what about randomization in this context?

We believe that the methods that are surely lacking here are suitable analogs
of the PCP techniques.

4 Online Algorithms

In this section, we discuss ideas from a new project of the authors which has
several goals. They include (i) providing a theoretical foundation for online model
theory, (ii) trying to apply methods from parameterized complexity to online
problems, and (iii) seeking to understand the use of “promises” in this area.

The last 20 years has seen a revolution in the development of graph algo-
rithms. This revolution has been driven by the systematic use of ideas from
topological graph theory, with the use of graph width metrics emerging as a
fundamental paradigm in such investigations. The role of graph width metrics,
such as treewidth, pathwidth, and cliquewidth, is now seen as central in both
algorithm design and the delineation of what is algorithmically possible. In turn,
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these advances cause us to focus upon the “shape” of much real life data. In-
deed, for many real life situations, worst case, or even average case, analysis no
longer seems appropriate, since the data is known to have a highly regular form,
especially when considered from the parameterized point of view.

The authors have begun a project that attempts to systematically apply ideas
from classical topological graph theory to online problems. In turn, this has given
rise to new parameters which would seem to have relevance in both the online
and offline arenas.

Online problems come in a number of varieties. There seems to be no math-
ematical foundation for this area along the lines of finite model theory and it is
our intention to develop such a theory. The basic idea is that the input for an
online problem is given as a sequence of “small” units, one unit per time step,
and our process must build the desired object according to this local knowledge.
The following gives a first definition for two such online structures.

Definition 2. Let A = 〈A,R1, . . . , Rn〉 be a structure. (We represent functions
as relations for simplicity.)

(i) We will say that a collection As ⊂ As+1 . . . of finite substructures of A is a
monotone online presentation where As denotes the restriction of A to the
domain As.

(ii) More generally we can have A = lims As, as above, but non-monotonically.

For instance, an online graph could be one where we are given the graph
one vertex at a time, and for each new vertex, we need to be told which of the
vertices seen so far are adjacent to the new vertex. In the non-montonic version,
vertices may be added and then subtracted. Monotonic online structures model
the situation where more and more information is given and we need to cope;
for instance, bin packing; and the non-monotonic situation is more akin to a
database that is changing over time.

An online procedure on an online presentation {As : s ≤ n} is a computable
function f , and a collection of structures {Bs :≤ n}, such that

(i) f : As 
→ Bs, and
(ii) Bs is an expansion of As, and
(iii) fs+1 extends fs.

The idea is that B would have some extra relation(s) which would need to be
constructed in some online fashion. A nice example to consider is colouring an
online graph. Here we need to assign a colour to each vertex as it is presented.
The colour used must differ from the colour of each of the neighbouring vertices,
but we get to use only the information given by the finite graph coloured so far.
The point is that the online situation is very different from the offline situation.
Every planar graph is 4-colourable, but there are trees on n vertices having
online presentations which require any online procedure to use at least logn
many colours to colour them. The performance ratio compares the offline and
the online performances.
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There is a constellation of questions here. For instance, suppose that B is
the expansion of A by a single relation R, and that this relation is first order
definable. First order properties are essentially local. Hence, one would expect
that there is a general theorem which will show that for any such first order R,
there is an online procedure with reasonable performance ratio.

What might be achieved for structures of bounded width? We could ask that
the Gaifman graph of the structure have bounded treewidth (or branchwidth,
or pathwidth.) There is almost nothing known here.

There is a wonderful analogy with computable structure theory, since there
we are dealing with strategies in games against a, perhaps hostile, universe. In
some general sense, in an online situation it is very hard to use the finiteness of,
say, a graph within the algorithm, since we don’t know how big the graph might
be. Information is only local. The recent work (at this conference!) on automatic
structures, where the algorithms in question deal with structures where the re-
lations are given in an online way by automata, are examples of this area. (See
e.g. Rubin [39].)

Online colouring of monotonic online graphs is one area that has historically
received some attention. Of course colouring is related to scheduling, where one
can expect inputs that are naturally “long” and “narrow”. For instance, consider
the online scheduling of some large collection of tasks onto a small number of
processors. One might reasonably expect a pattern of precedence constraints
that gives rise to only small clusters of interdependent tasks, with each cluster
presented more or less contiguously. Alternatively, one might expect a pattern
of precedence constraints giving rise to just a few long chains of tasks, with only
a small number of dependencies between chains, where each chain is presented
more or less in order. Hence, pathwidth would seem to be a natural parameter
to exploit in relation to online graph colouring and the authors have considered
the situation where the pathwidth of the input graph is bounded.

Kierstead and Trotter [35] considered online colouring for interval graphs. A
graph G = (V,E) is an interval graph if there is a function ψ which maps each
vertex of V to an interval of the real line, such that for each u, v ∈ V with u �= v,
ψ(u)∩ψ(v) �= ∅ ⇔ (u, v) ∈ E. It is not hard to show that G has pathwidth k iff
G is a subgraph of an interval graph with clique size bounded by k + 1.

If an interval graph is presented via an ordering of the vertices that reflects
a path decomposition of width k, then it can be coloured online using only k+ 1
colours, using the simple strategy of First-Fit. First-Fit is a simple, but impor-
tant, example of an online algorithm which colours the vertices of the input
graph G = (V,E) with an initial sequence of the colours {1, 2, . . .} by assign-
ing to each vertex vi, i = 1, . . . , |V |, the least colour that has not already been
assigned to any vertex previously presented that is adjacent to vi.

Note, however, that the topological fact that the graph has pathwidth k will
guarantee good performance no matter how the graph is presented. Kierstead
and Trotter [35] have given an online algorithm that colors any online presen-
tation of an interval graph having maximum clique size at most k + 1, using
at most 3k + 1 colors. Thus, any online presentation of a graph of pathwidth
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k can be colored using at most 3k + 1 colors. If we insist upon sticking with
the simple strategy of First-Fit we can at least achieve a constant performance
ratio on graphs of pathwidth k. Kierstead [33] has shown that for every online
interval graph, with maximum clique size at most k + 1, First-Fit will use at
most 40(k + 1) colours. In [34] Kierstead and Qin have improved the constant
here to 25.72.

Chrobak and Slusarek [15] have shown that there exists an online interval
graph G, and a constant c, where c is the maximum clique size of G, such that
First-Fit will require at least 4.4 c colours to colour G. Thus, the performance
ratio of First-Fit on graphs of pathwidth k must be at least 4.4. It is open as to
what the correct lower bound is here.

In [19], the authors have shown that for trees of pathwidth k, First-Fit will do
much better, needing only 3k+1 many colours. It is unclear how the parameters
of treewidth and pathwidth interact on number of colours needed. Related is
Sany Irani’s [31] notion of a d-inductive graph. A graph is d-inductive if there is
an ordering v1, . . . , vn of its vertices such that for all i, vi is adjacent to at most
d vertices amongst {vi+1, . . . , vn}. For instance, a planar graph is 5-inductive.
To see this, any planar graph must have a vertex of degree 5 or less. Call this v1.
Remove it, and edges adjacent to it. Repeat. Similarly, all graphs of treewidth
k are k-inductive. This notion generalizes the notions of bounded treewidth,
bounded degree, and planarity. Irani gives an upper bound on the number of
colours needed for First-Fit acting on d-inductive graphs.

Theorem 6 (Irani [31]). If G = (V,E) is d-inductive, then First-Fit will
colour any monotonic online presentation of G with at most O(d log |V |) many
colours.

This bound is tight for the class, as this second theorem from Irani [31] shows.

Theorem 7 (Irani [31]). For every online graph colouring algorithm A, and
for every d > 0, there is a family of d-inductive graphs G such that for every
n > d3, there is a G ∈ G where G has n vertices and A(G) = Ω(d log n).

We give here a weaker lower bound for First-Fit acting on bounded treewidth
graphs.

Theorem 8. For each k > 0, there is a family of graphs G of treewidth k, such
that for every n > k, there is a G ∈ G where G has n vertices and an online
presentation of G on which First-Fit will use Ω( k

log(k+1) log n) many colours.

Proof. We build G by describing a single online presentation. Each Gn will be
defined by a prefix of this presentation.

We first present k + 1 vertices, v1, . . . , vk+1, forming a clique at each step.
First-Fit will colour these vertices, in order, with colours c1, . . . , ck+1. We then
present an isolated vertex v1 which First-Fit will colour using c1. To force First-
Fit to colour the next vertex, vk+2, using colour ck+2, we will ensure that vk+2
is adjacent to v2, . . . , vk+1 and also to v1.
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Note that the graph presented so far, which we denote as Gk+2, has treewidth
k as required, with vertices v2, . . . , vk+1, vk+2, coloured using c2, . . . , ck+1, ck+2,
forming a k + 1 clique in Gk+2.

We now proceed inductively. Suppose that we have presented a graph Gm,
of treewidth k, on which First-Fit has been forced to use colours c1 through cm,
and that Gm contains a k+1 clique consisting of vertices vm−k, . . . , vm, coloured
using cm−k, . . . , cm. We form Gm+1, having treewidth k, on which First-Fit is
forced to use colour cm+1 as follows:

We first present a copy of Gm−k+1\vm−k+1, the graph up to the point where
vm−k+1 was presented (and coloured with cm−k+1), but with vm−k+1 left out.
We then present a new vertex vm+1 and make it adjacent to vm−k+1, . . . , vm

and also adjacent to all those vertices in the copy of Gm−k+1\vm−k+1 which
are (copies of) neighbours of vm−k+1. Since First-Fit was forced to use colour
cm−k+1 on vm−k+1 in Gm−k+1 it must have been the case that the neighbours of
vm−k+1 in Gm−k+1 used all the colours c1 through cm−k. Thus, the neighbours
of vm+1 use all the colours c1 through cm, and so First-Fit will be forced to
colour vm+1 using cm+1.

We now show that Gm+1 has treewidth k by constructing a tree decomposi-
tion of width k for Gm+1. Since vm−k, . . . , vm form a clique in Gm, it must be
the case that in any tree decomposition of Gm these vertices will appear together
in some bag, which we denote by Bm. To create a tree decomposition Tm+1 of
Gm+1 having width k, we start with a tree decomposition Tm of width k for Gm.
We create a new bag containing vm−k+1, . . . , vm, vm+1, denoted by Bm+1. We
add an edge from Bm in Tm to Bm+1. We then replicate a tree decomposition
Tm−k+1 of width k for Gm−k+1 and replace every occurrence of vm−k+1 in the
bags of Tm−k+1 by vm+1. Finally, we add an edge from some bag in Tm−k+1 that
contains vm−k+1 to Bm+1. Note that, apart from the vertex vm+1, there are no
vertices in common between Tm and our modified Tm−k+1, so this completes the
construction.

Now, if Gm consists of nm vertices then Gm+1 consists of nm + nm−k+1
vertices, Gm+2 consists of nm + nm−k+1 + nm−k+2 vertices, and so on. Gm+k

consists of nm +nm−k+1 +nm−k+2 + · · ·+nm vertices. Thus, nm+k ≤ (k+1)nm,
giving n1+k.d ≤ (k + 1)d, for any k > 0, d ≥ 0.

Rearranging, we get 1+k.d > k
log(k+1) log n1+k.d, which gives us the required

lower bound. �

There are still many unknowns here. For instance, what can be said on av-
erage? To make a bad online presentation of a graph G having low pathwidth
one seems to need to begin at the outer bags of some path decomposition for G
and work in. This would seem to be a rare event. John Fouhy [27] has run some
simulations and found that, in general, for random pathwith k graphs, we only
ever seem to need 3k + 1 colours using First-Fit. This is not understood. Along
with 0-1 behaviour, it is also suggestive of a more general theorem.

Finally, this material invokes ideas relating back to classical topological graph
theory. The intuition behind a graph having low pathwidth is that it is
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“pathlike.” In practice, if we are thinking of some process which is pathlike in
its graphical representation then we would not think of it as a “fuzzy ball.”

To make this idea precise, the authors introduced a new notion. We say
that a path decomposition of width k, in which every vertex of the underlying
graph belongs to at most l nodes of the path, has pathwidth k and persistence l,
and say that a graph that admits such a decomposition has bounded persistence
pathwidth. We believe that this natural notion truly captures the intuition behind
the notion of pathwidth.

A graph that can be presented in the form of a path decomposition with
both low width and low persistence is properly pathlike, whereas graphs that
have high persistence are, in some sense, “unnatural” or pathological. Consider
the graph G presented in Figure 1. G is not really path-like, but still has a path
decomposition of width only two. The reason for this is reflected in the presence
of vertex a in every node of the path decomposition. Our underlying idea is that
a pathwidth 2 graph should look more like a “long 2-path” than a “fuzzy ball”.

G c

d

e

f g

h

ia

b

aef afgabc acd ade agh ahi

Fig. 1. A graph G having low pathwidth but high persistence

What is interesting is that this notion is hard to recognize. Bounded per-
sistence pathwidth is a W [t]-hard property to recognize in general, and even
recognizing domino pathwidth, where we restrict every vertex of the underlying
graph to belong to at most 2 nodes of the path decomposition is W [2]-hard
(Downey and McCartin [20, 36]). Nevertheless, it seems that if we know that a
graph has low persistence for a given pathwidth, we ought to be able to get better
performance for algorithms. This is a very interesting situation where, because
we know the “shape” of the input, we can explore algorithms which might be
fast for the kinds of input we might expect, yet could be slow in general. This
idea remains to be explored.
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Natural Computing is a general term referring to computing taking place in
nature and computing inspired by nature. There is a huge surge of research on
natural computing, and one of the reasons for it is that two powerful and growing
research trends happen at the same time (and actually strengthen and influence
each other). These two trends are:

(1) trying to understand the functioning of a living cell from the cell-as-a-
whole perspective,

(2) trying to free the theory of computation from classical paradigms (the
ongoing transition to the so called “non-classical computation”) in order to ex-
plore a much broader notion of computation. This broader notion should take
into account not only the original/classical point of view of “computation as
calculation” but should also account for (be inspired by) processes, e.g., life
processes, taking place in nature.

Considering chemical reactions as metaphors for computing from both more
applied (programming) and more theoretical point of view has already an estab-
lished tradition in computer science, see, e.g., [1], [2] and [3].

In our talk (paper) we present a computational model based on chemical
reactions but geared more towards the chemistry of living cells. The underlying
idea of our model is that cell life consists of thousands of individual chemical
reactions (generally referred to as metabolism) and all chemical reactions in a
cell are regulated, where the regulation is achieved by two opposing effects:

(1) facilitation/acceleration, and
(2) inhibition/retardation.

Therefore the basic notion of our theory is the notion of reaction defined as
follows.

Definition 1. A reaction is a 3-tuple a = (X,Y, Z) of finite sets. If S is a set
such that X,Y, Z ⊆ S, then we say that a is a reaction in S.

The set X, also denoted by Xa, is the reactant (set) of a, the set Y , also
denoted by Ya, is the inhibitor (set) of a, and the set Z, also denoted by Za, is
the result (set) of a.

� All correspondence to the author’s address in Leiden.
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Definition 2. For a reaction a and a set K, the result of a on K, denoted
resa(K), is defined by: resa(K) = Za if Xa ⊆ K and Ya∩K = ∅, and resa(K) =
∅ otherwise.

If Xa ⊆ K and Ya ∩K = ∅, then we say that a is enabled in K; otherwise a
is not enabled in K.

For a set of reactions A and a set K, the result of A on K, denoted resA(K),
is defined by: resA(K) =

⋃
a∈A resA(K).

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we make about the chemistry of
a cell.

(i) We assume that we have the “threshold” supply of elements (molecules)
- either an element is present and then we have “enough” of it, or an element is
not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happes
to an element then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

We are ready now to define the basic object of our theory. It formalizes the
fact that every reaction in a cell interacts directly with other reactions. Thus,
e.g., an inhibitor of one particular reaction is almost always an element of some
other reaction, or a result of one reaction is a reactant of another reaction. That
is, the thousands of reactions in a cell form a network.

Definition 3. A reaction system is an ordered pair A = (S,A) such that A is
a set of reactions in S.

The set S is called the background of A.

Definition 4. For a reaction system A = (S,A) and a set K ⊆ S, the result of
A on K, denoted resA(K), is the result of A on K.

Thus, resA(K) = resA(K).

In our talk we discuss the basic notions and properties of reaction systems,
and the place of the theory of reaction systems within the current research on
natural computing.
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Abstract. Existential bounded communication of a communicating
finite-state machine means that runs can be scheduled in such a way that
message channels are always bounded in size by a value that depends only
on the machine. This notion leads to regular sets of representative exe-
cutions, which allows to get effective algorithms. We show in this paper
the equivalence of several formalisms over existentially bounded mod-
els: monadic second order logic, communicating automata and globally-
cooperative compositional MSC-graphs.

1 Introduction

Communicating finite-state machines (CFM for short), or equivalently, FIFO
channel systems/nets, are a fundamental model for concurrent systems. Despite
the undecidability of basic questions even for two processes [7], such as e.g. reach-
ability, several papers aim at identifying subclasses or heuristics allowing to solve
model-checking problems. For example, for lossy FIFO systems, reachability is
shown to be decidable (albeit of non-primitive recursive complexity [26]) using
well-quasi-orderings on channel contents [1, 10].

One of the techniques used by several papers [3–5] is based on the computa-
tion of the set of reachable configurations, hence of all channel contents, by some
regular device. Often this approach means that one has to relax the operations
on channels, which yields an overapproximation of the result.

The approach taken by our paper goes beyond regular languages. We use
partial-order methods for describing the behavior of a CFM. The formal model
are Message sequence charts (MSC for short), a diagram notation described by
the ITU norm Z.120. The advantage of reasoning about CFMs using MSCs is
both succintness and comprehension, since a single diagram subsumes a set of
words representing channel contents. Moreover, MSCs are a partial-order formal-
ism, and we specify CFM and MSC properties using partial-order logics such as
monadic-second order logic.

The MSC model has become popular in software development through its
visual representation, depicting the involved processes as vertical lines, and each
message as an arrow between the source and the target processes, according to

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 30–48, 2004.
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their occurrence order. The Z.120 standard has also extended the notation to
MSC-Graphs, which consist of finite transition systems, where each state embeds
a single MSC.

An early line of research considered a decidable subclass of MSC-based for-
malisms, corresponding to CFMs using universally-bounded channels. This means
that every CFM run can be executed with channels of fixed size, no matter how
actions are scheduled. Such a constraint allows to represent reachable config-
urations by regular sets, but is very restrictive. Whereas deciding whether a
CFM is universally-bounded is undecidable, recently heuristics have been con-
sidered for this problem [19]. For MSC-graphs, universal-boundedness is guar-
anteed by syntactic restrictions [2, 23] that imply regularity at the same time.
Over universally-bounded models, several characterizations have been obtained
[15] (see also [20], [17]), showing that CFMs, MSO and regular MSC languages
have the same expressive power.

As already mentioned, universally-bounded channels lack expressive power.
Many basic protocols of producer-consumer type (such as e.g. the asynchronous
protocol [27]) are not universally-bounded. However, we can relax the restriction
on channels in order to capture interesting behaviors such as the asynchronous
protocol. The idea is to require an existential bound on channels. This means
roughly that every run of a protocol must have some scheduling that respects a
given channel size (other schedulings might exceed the bound). In other words,
runs can be executed with bounded channels, provided that we schedule the
send/receive actions conveniently. Note that this requirement is perfectly legit-
imate in practice, since real life protocols must be executable within bounded
channels. Existential channel bounds appear implicitely in [12] (realizable CHM-
SCs). They allow to use representatives for e.g. solving the model-checking prob-
lem of CMSC-graphs against MSO [21]. A set of representatives is actually an
abstract representation of the set of MSCs representing the exact behavior (of
the CFM, MSC-graph, MSO-formula, etc). For properties expressed by globally-
cooperative MSC-graphs, regular sets of representatives can be used for deciding
model-checking within the same complexity bounds as for universally-bounded
channels [13].

In a nutshell, we have two objectives here: First, we would like to have a ro-
bust class of MSC-models, i.e., to provide equivalent characterizations in terms
of logics, regular expressions and automata. Second, we aim at providing decid-
ability for the model-checking problem.

The main result of the paper is that CFM, MSO and globally-cooperative
CMSC-graphs are equivalent over existentially-bounded MSCs. The MSO logic
here uses the partial order and the message relation as in [21], and is a pri-
ori more powerful than the logic used in [6]. A consequence of the main result
is that several interesting model-checking instances are decidable in this set-
ting. For instance, we can check whether an existentially-bounded CFM satisfies
an MSO formula or if a safe CMSC-graph is included in (intersects, respec-
tively) a CFM. Finally, we answer in particular to the question left open by
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[13], where we ask whether globally-cooperative MSC-graphs are always imple-
mentable.

Overview. In Section 2 we define the formalisms used in the paper – message
sequence charts, communicating automata, MSO, and Mazurkiewicz traces. Sec-
tion 4 establishes the main tool used for existential bounded communication, that
is, the connection to Mazurkiewicz traces. Then we describe the way model-
checking works using representative executions. In Section 5 we state the main
characterizations and we sketch the proof. The difficult part is the construction
of a CFM from a regular set of representative runs, since this means that we have
to distribute the control. Finally, Section 7 contains some additional results.

Related work. Our paper generalizes several results about expressivity and model-
checking for MSCs with universally-bounded channels [2, 23, 15, 17, 20]. Repre-
sentative executions in model-checking MSO properties have been used in [21],
whereas model-checking MSC properties has been considered in [13]. Recently,
the equivalence between CFM and existential MSO has been shown in [6] with-
out channel restriction. However, the logic used by [6] is weak, for it allows only
the message relation and the immediate successor on each process. In contrast,
MSO as used in our paper and by [21, 15] refers to the partial order.

2 Definitions

2.1 Message Sequence Charts

The communication framework used in our paper is based on sequential pro-
cesses that exchange asynchronously messages over point-to-point, error-free
FIFO channels. Let P be a finite set of process names that we fix through-
out this paper. Processes act by either sending a message, that is denoted by
p!q meaning that process p sends to process q, or by receiving a message, that
is denoted by p?q, meaning that process p receives from process q. Thus we do
not use different message contents in our notation. In the same line, we do not
consider local events, that is events which are neither send nor receive. This is
done for convenience and the reader might convince himself/herself that proofs
work (with small alterations) in the more general setting as well.

For p ∈ P, we define a local alphabet Σp = {p!q, p?q | q ∈ P \ {p}} and set
Σ =

⋃
p∈P Σp. For the rest of the paper, whenever a pair of processes p, q ∈ P

communicates, we will implicitly assume that p �= q.
We introduce now the notation of (compositional) message sequence charts,

that is usually employed for describing scenarios of communication. The message
sequence chart notation (MSC for short) corresponds to the Z.120 standard
of the ITU. Theoretical work has revealed several deficiencies of the standard
notation of MSCs and MSC-graphs, which motivated the extended notation of
compositional message sequence charts, CMSC for short. We will be mainly
interested in MSCs as a complete formalism, but we will use CMSCs as a kind
of technical tool.
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Definition 2.1. [12] A compositional message sequence chart (CMSC) is a
tuple M = (E, λ,msg, (<p)p∈P) where

– E is a finite set of events
– λ : E → Σ maps each event to a type, and we set

• Ep = {e ∈ E | λ(e) ∈ Σp} the set of events of process p,
• S = {e ∈ E | ∃p, q ∈ P : λ(s) = p!q} the set of send events, and
• R = E \ S the set of receive events

– <p is a total order on Ep for any p ∈ P
– msg : S → R is a partially defined, injective mapping satisfying

• if msg(s) = r, then there are p, q ∈ P distinct such that λ(s) = p!q and
λ(r) = q?p,

• if s1 <p s2 and λ(s1) = λ(s2) = p!q, then msg(s1) <q msg(s2) if defined
(FIFO),

such that the relation < :=
⋃

p∈P <p ∪{(s,msg(s)) | s ∈ S} is acyclic.
A message sequence chart (MSC for short [16]) is a CMSC (E, λ,msg,

(<p)p∈P) such that the message mapping msg : S → R is one-to-one, i.e., in
particular defined everywhere.

For a CMSC M , we will write P (e) = p if e ∈ Ep, i.e., λ(e) ∈ Σp. Moreover,
we write e�p f if e is the immediate predecessor of f on process p, i.e., e <p f
and e <p g ≤p f implies g = f .

Figure 1 depicts an MSC. In that picture, there are two processes named 1
and 2. Further, a = 1!2 and b = 2?1 are two actions. Hence, the MSC from
Figure 1 denotes the sending and receiving of three messages from process 1 to
process 2. It does not specify the content of these messages.

1 2
a
a

a

b

b
b

Fig. 1. A Message Sequence Chart (MSC)

Let M = (E, λ,msg, (<p)p∈P) be a CMSC. Then the relation < being acyclic
implies that its transitive and reflexive closure ≤ is a partial order on E, called
the visual order.1 Thus, we can look at a CMSC as a poset (E,≤, λ). Any
linear extension of ≤ is called a linearization of M . We represent it as a word
u = u1 · · ·un over the alphabet Σ. Thus, the set Lin(M) of linearizations of the

1 Note that < �= {(e, f) ∈ E2 | e ≤ f, e �= f}.
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CMSC M is a subset of Σ∗. For a set (or language) of CMSCs M, we write
Lin(M) =

⋃
M∈M Lin(M).

Any linearization of an MSC is simply called a linearization. A word (lin-
earization) w ∈ Σ∗ is B-bounded for some positive integer B if for any prefix
u of w and any p, q ∈ P, the number of occurrences of p!q in u exceeds that of
occurrences of q?p in u by at most B. An MSC M is existentially B-bounded
(∃-B-bounded for short) if it has some B-bounded linearization w ∈ Lin(M).
Let LinB(M) ⊆ Lin(M) denote the set of B-bounded linearizations of M – by
definition, this set is non-empty iffM is ∃-B-bounded. An MSCM is universally-
B-bounded if Lin(M) = LinB(M) (where B ∈ N).

The set of all CMSCs, resp. MSCs and ∃-B-bounded MSCs, will be de-
noted CMSC, resp. MSC and MSCB . For checking whether an MSC M =
(E, λ,msg, (<p)p∈P) is ∃-B-bounded one can use the following relation ≺B ⊆
E × E [18]:

Let ≺B = msg∪ rev∪(<p)p∈P , where

rev(r) = s′ iff msg(s) = r, λ(s) = λ(s′), and
|{x ∈ E | s <p x ≤p s

′, λ(s) = λ(x)}| = B

That is, rev maps a receive r with r = msg(s) to the send s′ that is the B-th
event with λ(s′) = λ(s) and s < s′ (if such an event exists).

Lemma 2.2. [18] An MSC M is ∃-B-bounded iff the relation ≺B= msg ∪ rev ∪
(<p)p∈cP is acyclic.

2.2 Communicating Finite-State Machines

The most natural formalism to describe scenarios of communication protocols,
i.e., sets of MSCs, are communicating finite-state machines (CFM for short) that
we define in this section. CFMs are a realistic model for distributed algorithms
based on asynchronous message passing.

Definition 2.3. [7] A communicating finite state machine (CFM) is a tuple
A = (C, (Ap)p∈P , F ) such that

– C is a finite set of message contents or control message.
– Ap = (Sp,→p, ιp) is a finite transition system over the alphabet Σp × C for

any p ∈ P (i.e., →p ⊆ Sp × (Σp × C) × Sp) with initial state ιp ∈ Sp.
– F ⊆

∏
p∈P Sp is a set of global final states.

The usual way to define the behavior of a CFM considers these machines as
sequential devices that accept linearizations of MCSs. The details are as follows:
Let A = (C, (Ap)p∈P , F ) be a CFM. A configuration of A consists of a tuple of
local states and of buffer contents, i.e., it is an element ((sp)p∈P , (wp,q)p,q∈P) of∏

p∈P Sp ×
∏

p,q∈P C
∗. For two configurations, an action a ∈ Σp, and a control

message c ∈ C, we have

((s1p)p∈P , (w1
p,q)p,q∈P)

a,c−→ ((s2p)p∈P , (w2
p,q)p,q∈P)
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if

– s1p
a,c−→ s2p is a transition of the local machine Ap and s1q = s2q for q �= p.

– if a = p!q, then w2
p,q = w1

p,qc (i.e., the control message c is appended to the
buffer from p to q) and w1

p′,q′ = w2
p′,q′ for (p′, q′) ∈ P2 \ {(p, q)} (i.e., all

other buffers are unchanged)
– if a = p?q, then w1

q,p = cw2
q,p (i.e., the control message c is deleted from the

front of the buffer from q to p) and w1
q′,p′ = w2

q′,p′ for (q′, p′) ∈ P2 \ {(q, p)}
(i.e., all other buffers are unchanged).

A sequential run of A is a path d1, a1, d2, a2, . . . , an, dn+1 with di
ai,ci−→ di+1 for

some control messages ci ∈ C. It is accepting if d1 = ((ιp)p∈P , (ε)p,q∈P) and dn =
(f, (ε)p,q∈P) for some f ∈ F . Finally, L(A) ⊆ Σ∗ is the set of words a1a2 · · · an

such that there exists an accepting sequential run d1, a1, d2, a2, . . . , an, dn+1.
A natural alternative definition of the semantics of a CFM A uses MSCs for

representing succesful runs. To this purpose, let M = (E, λ,msg, (<p)p∈P) be an
MSC and ρ : E →

⋃
p∈P Sp be a mapping. For this mapping, we define a second

mapping ρ− : E →
⋃

p∈P Sp as follows. Let e ∈ Ep. If there is e′ ∈ Ep such that
e′ �p e then ρ−(e) = ρ(e′). Otherwise (i.e., if e is minimal in (Ep, <p)), we set
ρ−(e) = ιp. The idea behind these definitions is that ρ(e) denotes the state of
the local machine Ap after executing e and that ρ−(e) describes the state the
local machine was in before executing e. Then the mapping ρ is a run if for any
s ∈ E with λ(s) = p!q and msg(s) = r, there is some control message c ∈ C such

that ρ−(s)
λ(s),c−→p ρ(s) and ρ−(r)

λ(r),c−→q ρ(r).
Now let ρ be a run on the MSC M . If Ep �= ∅, let sp = ρ(ep) where ep is the

maximal event in (Ep, <p). Otherwise, define sp = ιp. The run ρ is succesful if
the tuple (sp)p∈P belongs to the set of global final states F . An MSC is accepted
by the CFM A if it admits a succesful run. We will denote by L(A) the set of
MSCs accepted by A. Notice that a MSC can admit several (accepting) runs of
a CFM.

Now it is straightforward, but technically cumbersome to prove the relation
between the two languages of a CFM:

Proposition 2.4. Let A be a CFM. Then L(A) = Lin(L(A)).

2.3 CMSC-Graphs

An MSC stands for a single scenario, so for describing sets of scenarios one
needs some formalism for composing single scenarios. A simple way to do this
was proposed in the Z.120 standard through high-level MSCs (denoted here as
MSC-graphs). We define now CMSC-graphs [12], that can be viewed as a kind
of regular expressions over communication events.

We need first to define the composition of two CMSCs. Intuitively, to compose
CMSCs M1 and M2, we glue the corresponding process lines together and draw
the second CMSC below the first one. In order to make this formal, we need
the restriction of a CMSC M = (E, λ,msg, (<p)p∈P) to a subset F ⊆ E: It
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is the CMSC M |F = (F, λF ,msgF , (<F
p )p∈P) with λF = λ|F , msgF (s) = r if

msg(s) = r and s, r ∈ F , and <F
p = <p ∩ (F × F ).

Definition 2.5. Let Mi = (Ei, λi,msgi, (<i
p)p∈P) for i = 1, 2 be CMSCs. The

composition M1 ·M2 is the set of CMSCs M = (E1 �E2, λ,msg, (<p)p∈P) such
that

– M |Ei
= Mi for i = 1, 2, and

– e ∈ E2 and e <p e
′ imply e′ ∈ E2 for any e, e′ ∈ E1 � E2.

This composition can naturally be extended to a binary operation on lan-
guages of CMSCs by M1 ·M2 =

⋃
M1∈M1,M2∈M2

M1 ·M2. This operation turns
out to be associative. Notice that, in general, the product M1 · · ·Mn contains
more than one CMSC. However, it may contain at most one MSC, since the
message mapping must be FIFO.

Definition 2.6. A CMSC-graph is a labeled graph G = (V,→, λ, V 0, V f ) with

– V is the finite set of vertices.
– V 0, V f ⊆ V are finite sets of initial/final vertices respectively.
– → ⊆ V × V is the set of edges.
– λ : V → CMSC labels a node v with the CMSC λ(v).

A path in the CMSC-graph G is a sequence v1, . . . , vn of nodes in V such
that vi → vi+1 for all i. It is accepting if v1 ∈ V 0, vn ∈ V f and the product
λ(v1) · · ·λ(vn) contains an MSC M . This MSC is said to be accepted by G. The
set of all MSCs accepted by G is denoted L(G).

Figure 2 depicts a CMSC-graph. Here, we have two processes named “host”
and “function”. In the leftmost node of the CMSC-graph, one finds a CMSC.
This CMSC describes that host sends messages “send” and “m” that are received
by the process function. Immediately after receiving a message, process function
sends an acknowledgment. While the sending of these acknowledgments is part of
the current CMSC node, their receiving by the host is located in the next node.
Thus, after executing this CMSC, the buffer from function to host contains two
acknowledgments while the other buffer is empty. Altogether, the CMSC-graph
describes all MSCs where process function immediately acknowledges messages
it gets. The first message from host to function initializes the transfer from host
to function. Host sends the message m for the first time. Since it does not get
the acknowledgement in time, it must send again m, before getting the first
acknowledgement. Then it iterates between sending a message and receiving the
acknowledgement from the message before, and at the end, clears the buffer.

The size |M | of a CMSC M is the number of its events. The size |G| of a
CMSG G is

∑
v∈V |λ(v)|. The size of P is the number ℘ of processes.

2.4 Monadic Second Order Logic

Yet another way of specifying sets of MSCs (after CFMs and CMSC-graphs)
are logical formulas. We consider here monadic second order logic, that is the



A Kleene Theorem for a Class of Communicating Automata 37

host function host function host function

send

ack
m

m

ack
ack

ack

Fig. 2. A CMSC-Graph specifying transactions of usb 1.1

classical formalism when characterizing regularity of sets of words, trees, traces,
etc. The syntax is defined as follows. Let R be a set of binary relations.

Definition 2.7. MSO(R)-formulas over the alphabet Γ are defined by the syn-
tax

ϕ ::= va(x) | R(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃Xϕ | ∃xϕ | x ∈ X

where R ∈ R, a ∈ Γ , x, y are first order variables, and X is a second order
variable.

The relations in R used in the paper are the message relation msg, the vi-
sual order ≤, the process order <p and the immediate successor �p on p ∈ P.
An MSO(R)-formula over the alphabet Σ is interpreted on an MSC M =
(E, λ,msg, (<p)p∈P) as expected. We have M |= va(x) if λ(x) = a, M |= x ≤ y
if x ≤ y in the visual order on M , and M |= msg(x, y) if x ∈ S and msg(x) = y.
Moreover, M |= (x <p y) if x <p y and M |= (x �p y) if y is the immediate
successor of x w.r.t. <p.

For an MSO-formula ϕ over Σ without free variables, let L(ϕ) denote the set
of MSCs that satisfy ϕ.

An MSO(≤)-formula over an alphabet Γ can be interpreted on Γ -labeled
partial orders M = (E,≤, λ) with λ : E → Γ as usual, by letting M |= va(x) if
λ(x) = a and M |= x ≤ y if x ≤ y. Note that words over Γ can be considered
in a natural way as Γ -labeled linear orders. Using this interpretation, we write
w |= ϕ to denote that the word w (more precisely: the associated linear order)
satisfies ϕ. Let L(ϕ) denote the set of words over Γ that satisfy ϕ.

We will also consider existential monadic second-order logic (EMSO). An
EMSO formula is of the form ∃X1 . . . Xnϕ with ϕ a first order formula (that is,
without second order quantifications).

2.5 Traces

So far, we described four formalisms for the specification of sets of MSCs: fi-
nite automata that accept linearizations, communicating finite-state machines
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that generate MSCs, CMSC-graphs, and MSO over MSCs or pomsets. Later,
we will relate the expressive power of these formalisms. A crucial tool in these
investigations are Mazurkiewicz traces [22] that are introduced next.

A trace alphabet is a pair (Ω, I) consisting of an alphabet Ω and a sym-
metric and irreflexive relation I ⊆ Ω2. The relation I will be refered to as the
independence relation; its complement D = Ω2 \ I is the dependence relation.

Let ∼I ⊆ Ω∗ × Ω∗ be the congruence on the free monoid Ω∗ generated
by the equations ab ∼I ba for all (a, b) ∈ I. A trace is an equivalence class
[w]I of this equivalence relation. Further, the I-closure of a set L ⊆ Ω∗ is the
set [L]I =

⋃
w∈L[w]I of all words that are ∼I -equivalent to same element of

L. If L = [L]I , we say that L is closed under I-commutation (or I-closed for
short).

An alternative way to define traces is via labeled partially ordered sets. Any
word u = a1a2 · · · an with ai ∈ Ω defines a labeled poset tu = (E,≤I , λ) with

– E = {1, . . . , n}.
– λ(i) = ui, and
– ≤I is the least partial order on E such that i ≤I j whenever i < j and
λ(i)Dλ(j).

It belongs to the very basics of trace theory that two words u and v are
equivalent w.r.t. ∼I iff the two labeled partial orders tu and tv are isomorphic.
This implies in particular that [u]I is the set of linearizations of the labeled poset
tu. At places, it will be useful to consider a trace not as an equivalence class of
words, but as (an isomorphism class of) labeled partial orders tu. This allows
in particular to interprete MSO(≤I)-formulas in a trace and thereby to define
notions like [u]I |= ϕ for a trace [u]I .

An Ω-labeled partially ordered set (E,≤, λ) is isomorphic to some tu if we
have for any r, s ∈ E

– r � s implies (λ(r), λ(s)) ∈ D, and
– if r and s are incomparable, then (λ(r), λ(s)) ∈ I.

We end this section by recalling some fundamental results from Mazurkiewicz
trace theory (cf. [8]). Below, we call an automaton A I-loop-connected if for every
loop of A, the set of letters labeling the loop induces a connected subgraph of
(Ω,D). Asynchronous automata are defined in Section 6.

Theorem 2.8. Let (Ω, I) be a trace alphabet and let L ⊆ Ω∗ be I-closed.

1. (Ochmański’s theorem [24]) L is regular iff there exists some I-loop-connected
automaton A with L = [L(A)]I .

2. (Zielonka’s theorem [29]) L is regular iff it is accepted by a deterministic
asynchronous automaton.

3. L is regular iff L = {u ∈ Ω∗ | tu |= ϕ} for some MSO formula ϕ [28, 9].
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3 Regular MSC Languages

Regularity is a fundamental concept in many settings - strings, trees, graphs
etc, and plays a crucial role in verificaton, ensuring the effectiveness of several
operations. The most basic operations are intersection M∩M′ = ∅ and inclusion
M ⊆ M′ of two models M,M′. We can view these operations as model-checking
a model M against a negative property M′ (intersection) or a positive one
(inclusion). For models M,M′ expressed by unrestricted MSC-graphs these two
questions are undecidable:

Theorem 3.1. [2, 23] Let M,M′ be sets of MSCs. Then both questions M ∩
M′ = ∅ and M ⊆ M′ are undecidable, provided that the model M is generated
by an MSC-graph and the property M′ is generated either by an MSC-graph or
an LTL-formula defining a set of linearizations.

For languages expressed by MSC-graphs a syntactic condition recalling Och-
mański’s Theorem on Mazurkiewicz traces was proposed in order to preserve
regularity:

Definition 3.2. The communication graph CGM = 〈P,→〉 of an MSC M con-
tains the processes P ⊆ P that occur in M , and with edges p → q ∈ E if there
is a message from p to q in M .
Definition 3.3. [2, 23] An MSC-graph G is regular, if for each loop σ in the
graph of H, the communication graph CGM of the MSC M labeling σ is strongly
connected.

The definition of regular MSC-graphs is syntactic, and can be checked in
co-NP [23, 2]. Model checking becomes decidable for regular MSC-graphs, since
their languages are regular [23, 2]. More precisely:

Theorem 3.4. [14] A set of MSCs M is the language of a regular MSC-graph
if and only if it has a regular set of linearizations Lin(M) and is generated by a
finite set of MSCs.

The price that has to be paid for preserving the regularity of Lin(M) is
that communication channels must be universally-bounded. This is an important
restriction, that prevents the description of many known protocols (see next
section).

Proposition 3.5. For a regular MSC-graph G, its MSC language L(G) is uni-
versally (s+1)℘n-bounded where s is the number of nodes of G and n the maximal
number of messages in a node.

The next proposition shows an exponential bound on the size of an automaton
for Lin(G), with G being regular. A similar proof appears in [2]. Note that
this bound on the automaton size would imply an exponential channel bound,
whereas Proposition 3.5 provides a polynomial bound.

Proposition 3.6. For a regular MSC-graph G, the set of linearization Lin(G) is
accepted by an automaton of size at most 2O(℘2(s+1))n℘2

, where s is the number
of nodes of G and n the maximal number of messages in a node.
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Regular MSC languages have been shown to be a robust class of specifications:

Theorem 3.7. [15] Let M be an ∀-B-bounded set of MSCs. Then the following
assertions are equivalent:

1. M = L(A) for some CFM A.
2. M = L(ϕ) for some MSO(≤,msg) formula ϕ.
3. Lin(M) is a regular set.

4 Existential Boundedness

4.1 Why?

This section presents the main technical restrictions that we use in order to ob-
tain a robust characterization of a class of CFMs. In a nutshell, we have two
objectives: first we would like to have equivalent characterizations in terms of
logics, regular expressions and automata. Second we aim at providing decidabil-
ity for the model-checking problem. One of the main restrictions that we impose
is an existential bound on channels. Note that this requirement is perfectly le-
gitimate in practice, since real life protocols must be executed with bounded
communication buffers. Of course, this only means that any protocol run must
have some bounded linearization (other linearizations might exceed the bound),
for some bound that depends on the protocol, only.

A closely related notion is that of representative linearizations. For a set of
MSCs M, we call X ⊆ Lin(M) a set of representatives if for every MSC M ∈ M
we have X ∩Lin(M) �= ∅. For a regular set X of representatives of M, it is easy
to see that X is composed only of B-bounded linearizations for some B [21], so
M is ∃-B-bounded. Conversely, for any ∃-B-bounded set M, the set LinB(M)
of B-bounded linearizations is a set of representatives.

Representatives based on B-bounded linearizations can be used e.g. to do
model-checking beyond regular MSC languages, as shown in [21, 13]. The propo-
sition below summarizes the basic ideas:

Proposition 4.1. Let M be a set of ∃-B-bounded MSCs, and let M′ be an
arbitrary set of MSCs.

1. We have M ∩ M′ = ∅ iff LinB(M) ∩ LinB(M′) = ∅, and M ⊆ M′ iff
LinB(M) ⊆ LinB(M′).

2. Assume that LinB(M′) is regular (but not necessarily a representative set)
and that M has a regular set of B-bounded representatives. Then negative
model-checking M ∩ M′ = ∅ and positive model-checking M ⊆ M′ are
decidable.

For CMSC-graphs we can obtain existentially-bounded representatives via a
simple syntactic restriction:

Definition 4.2. A CMSC-graph G is safe if every sequence of CMSCs labeling
a path from some initial to some final node of G admits one composition that is
an MSC (i.e., is accepting).
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For example, the CMSC-graph in Figure 2 is safe. For any CMSC-graph
G = (V,→, λ, V 0, V f ) we can define a regular set KG of representatives by
choosing a linearization �(v) for every CMSC λ(v) and letting

KG = {�(v1) · · · �(vn) | v1, . . . , vn is an accepting path of G}

The important observation is that a safe CMSC-graph G is ∃-|G|-bounded2.
Moreover, KG is a (regular) set of |G|-bounded representatives for G.

We also have that LinB(M′) is regular for all B if M′ = L(A) for some
CFM A, or if M′ is defined by an MSO formula. The first claim is trivial,
whereas the second claim is shown using for example the translation of MSO
over traces to MSO over words [28, 9]. Together with Proposition 4.1 this shows
the decidability of the different instances of the model-checking problem below
(where we identify a device with its language, e.g., a CFM is ∃-B-bounded if its
language is):

Proposition 4.3. All questions below are decidable:

1. Checking that an ∃-B-bounded CFM or a safe CMSC-graph satisfies a for-
mula of MSO(≤,msg).

2. Checking that a CFM has empty intersection with a safe CMSC-graph.
3. Checking that a safe CMSC-graph is included in a CFM.

As shown by [21, 25], having a set of representatives KG for a CMSC-graph
G suffices for doing model-checking against a property expressed by a partial
order logics. More precisely, LinB(M) (with M the set of MSCs satisfying such
a formula ϕ) is an effective regular set. The existential bound B is given by the
graph G.

However, if we want to do model-checking of two safe CMSC-graphs, we need
that LinB(G) is regular for at least one of them. We can use again the notion of
communication graph. Note however that we only require weak connectedness:

Definition 4.4. The communication graph of a set A ⊆ Σ is a graph whose
vertices are the processes involved in A, and there is an (undirected) edge between
vertices p, q iff A contains both a send p!q from p to q and a receive q?p on q
from p. The communication graph of a CMSC M = (V, λ,msg, (<p)p∈P) is the
communication graph of A = λ(E). A loop in a CMSC-graph is connected if the
union of the communication graphs of the CMSCs labeling it, is connected. A
CMSC-graph G is loop-connected if every loop of G is connected.

A CMSC-graph is globally-cooperative (gc-CMSG for short) if it is safe and
loop-connected [13].

For example, the CMSC-graph in Figure 2 is globally-cooperative. We will
show that LinC(G) is regular for all C ≥ |G| for any globally-cooperative CMSC-
graph G in Proposition 5.4.

2 The reason is that any loop on an accepting path has equally many sends p!q and
receives q?p, for every p, q.
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4.2 Existential Bounds and Traces

Let B be a positive integer that we fix for this section. We define as in [17] a trace
alphabet (Ω, I) with Ωp = Σp×{0, . . . , B−1} for p ∈ P and Ω =

⋃
p∈P Ωp. The

dependence relation D ⊆ Ω×Ω is given by (x, i)D(y, j) if either P (x) = P (y) or
{(x, i), (y, j)} = {(p!q, n), (q?p, n)} for some p, q, n. Then I = Ω2\D is symmetric
and irreflexive, hence (Ω, I) is a trace alphabet.

We define a mapping ˜ : Σ� → Ω� by numbering the events of the same
type modulo B. Let ˜x1 · · ·xm = (x1, n1) . . . (xm, nm), with ni = |{j ≤ i | xj =
xi}| mod B, i.e., modulo B, there are ni occurrences of the letter xi in the prefix
x1x2 . . . xi. We also consider the projection π : Ω∗ → Σ∗ given by π(x, n) = x
for (x, n) ∈ Ω. A word u ∈ Ω� is B-bounded if π(u) ∈ Σ∗ is B-bounded. We
denote L̃ = {ũ | u ∈ L}.

Let M = (E, λ,msg, (<p)p∈P) be an MSC. For e ∈ E, let λI(e) = (λ(e), n)
with n = |{f ∈ E | f ≤p e, λ(f) = λ(e)}| mod B (i.e., n is the number of events
before e labeled by the same element of Σ). We associate with M the structure
tr(M) = (E,≺∗B , λI)3. Figure 3 depicts the result when applying this operation
to the MSC from Figure 1 with B = 2. As before, a stands for 1!2 and b for
2?1. Note that there is one additional edge from the first occurence of (b, 1) to
the first second occurence of (a, 1). If M is ∃-B-bounded, then the relation ≺B

is acyclic by Lemma 2.2, i.e., in this case tr(M) := (E,≺∗B , λI) is a Ω-labeled
partial order.

Lemma 4.5. Let M = (E, λ,msg, (<p)p∈P) be an ∃-B-bounded MSC.

1. The labeled poset tr(M) is a trace over (Ω, I).
2. If u is a B-bounded linearization of M , then the set of linearizations of tr(M)

equals [ũ]I . Finally, LinB(M) = π([ũ]I).

5 The Main Result

The main result is stated in the following theorem, which generalizes the results
of [17, 15, 20] from universally-bounded to existentially-bounded sets of MSCs.
We use a unified proof technique, interpreting MSCs as traces and applying
known constructions for traces.

Theorem 5.1. Let M be an existentially-bounded set of MSCs. Then the fol-
lowing assertions are equivalent:

1. M = L(A) for some CFM A.
2. M = L(ϕ) for some EMSO(�p,msg) formula ϕ.
3. M = L(ϕ) for some MSO(≤,msg) formula ϕ.
4. M = L(G) for some gc-CMSC-graph G.
5. LinB(M) is a regular set of representatives for M, for some B ∈ N.

3 Recall that ≺B = msg ∪ rev ∪(<p)p∈P .
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Fig. 3. Trace pomset associated with the MSC of figure 1

Remark 5.2. Since the set of B-bounded linearizations of MSCs (over a fixed
set of processes) is obviously regular, the last item of Theorem 5.1 implies in
particular that there exist a CFM (an EMSO(�p,msg) formula, a gc-CMSC-
graph, resp.) that generates precisely the set MSCB of ∃-B-bounded MSCs.
Constructing this CFM is the most difficult part of the proof.

It is easy to show that (1) implies (2) by the usual techniques (actually,
[6] shows that (1) and (2) are equivalent over unrestricted sets of MSCs). The
implication (2) to (3) is immediate. We will show that (3) implies (5), that (4)
and (5) are equivalent, and finally that (5) implies (1). The proofs use the trace
alphabet (Ω, I) and in particular Theorem 2.8 at crucial points: For showing
that (3) implies (5), we use the equivalence between MSO and regular sets of
traces [28, 9], i.e., Theorem 2.8(3). To prove that (4) and (5) are equivalent,
we will use a slight variation of Ochmański’s Theorem 2.8(1) [24]. Finally, to
prove (5) implies (1), we will use Zielonka’s Theorem 2.8(2) [29] and simulate
asynchronous automata by CFMs. More precisely, we first build a CFM A such
that L(A)∩ MSCB = M, where M is a set of ∃-B-bounded MSCs with regular
set of representatives LinB(M). As mentioned above, the difficult part is to
add a control CFM that ensures that the generated MSC is ∃-B-bounded (and
deadlocks if this is not the case).

We first demonstrate the implication (5)⇒(4).

Proposition 5.3. Let M be a set of ∃-B-bounded MSCs such that LinB(M) ⊆
Σ∗ is regular. Then there exists a globally-cooperative CMSC-graph G with
L(G) = M.

Proof. Since the mapping ˜ is sequential, the set L = ˜LinB(M) ⊆ Ω∗ is regular
as well. By Lemma 4.5, the set L is I-closed. Thus, we can apply Ochmański’s
Theorem 2.8 (1) for obtaining an I-loop-connected automaton B with [L(B)]I =
L. Replacing each label (a, n) ∈ Ω by a yields an automaton A over the alphabet
Σ. Since all words in L are of the form ũ for some u ∈ Σ∗, we get L̃(A) = L(B) ⊆
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L and therefore L(A) ⊆ LinB(M). Thus, all successful paths in A are labeled by
B-bounded linearizations of MSCs from M. Conversely, if M ∈ M, then there is
u ∈ LinB(M) with ũ ∈ L(B) and therefore u ∈ L(A). Thus, L(A) = LinB(M).

Now let ρ be a loop in the automaton A and let A ⊆ Σ be the set of labels
appearing in this loop. Then ρ is also a loop in the automaton B with label set
A′ ⊆ Ω. Since B is I-loop-connected, A′ is I-connected. Since B accepts only
words of the form ũ for some linearization u of an MSC, we have that (p!q, n) ∈ A′

iff (p?q, n) ∈ A′. Hence the I-connectedness of A′ implies the connectedness of
the communication graph of {a | ∃n : (a, n) ∈ A′}.

To obtain a CMSC-graph, we transform A in such a way that labels move
from transitions to nodes. The resulting CMSC-graph G is safe since A accepts
only linearizations of MSCs, and globally-cooperative since loops in A are labeled
by sets A ⊆ Ω whose communication graph is connected. �

The following proposition does not only claim the implication (4)⇒(5), but
it also gives an upper bound on the size of the automaton accepting LinB(M)
in terms of the gc-CMSC-graph generating M.

Proposition 5.4. Let G be a gc-CMSC-graph. Then LinB(G) is regular and
one can construct an automaton of size at most |G|O(℘4B2|G|) recognizing it.

6 From Regular Representatives to CFM

In order to obtain a CFM from a regular set of representatives, we will use
Zielonka’s theorem, which characterizes regular trace languages by a distributed
automaton model, namely by asynchronous automata4.

Definition 6.1. An asynchronous automaton over the trace alphabet (Ω, I) is
a tuple B = ((Ke, δe, k

0
e)e∈Ω ,Acc) such that for any e ∈ Ω:

– Ke is a finite set of local states,
– δe :

∏
(e,f)∈D Kf → Ke is a local transition function,

– k0
e ∈ Ke is a local initial state,

and Acc ⊆
∏

e∈Ω Ke is a set of global accepting states.

The idea is that an asynchronous automaton consists of local components,
one for each letter e ∈ Ω. When the e-component executes the action e, its new
state results from the current states corresponding to the letters depending on
e.5 Only at the very end of a run, there is a global synchronization through final
states.

4 The definition we give below actually corresponds to deterministic asynchronous
cellular automata.

5 In terms of parallel algorithms, this corresponds to a concurrent-read-owner-write
mechanism.
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Next we define runs of asynchronous automata. Intuitively, a run can be seen
as a labeling of the pomset by local states, that is consistent with the transition
relations. Let (E,≤, λI) be a trace over (Ω, I), θ : E →

⋃
e∈Ω Ke a mapping,

and t ∈ E with λI(t) = e. For f ∈ Ω with (e, f) ∈ D, we define θ−f (t) = θ(tf ) if
tf is the maximal f -labeled event of E properly below t. If no such event exists,
θ−f (t) = k0

f is the f -component of the initial state of B. The mapping θ is a
run if for any t ∈ E with λ(t) = e, we have θ(t) = δe((θ−f (t))(e,f)∈D). Next,
for e ∈ Ω let ke = θ(te) where te is the maximal e-labeled event of E (if such
an event exists), and ke = k0

e otherwise. The run θ is successful provided that
(ke)e∈Ω ∈ Acc is a (global) accepting state. The set of traces L(B) accepted
by B is the set of traces that admit a successful run. By Thm. 2.8, an I-closed
set of words L is regular iff there exists an asynchronous automaton B with
L = Lin(L(B)).

6.1 A CFM Almost Computing a Regular Set of Representatives

Given a set of bounded MSCs M with LinB(M) regular, in this section we
construct a CFM that checks whether a given ∃-B-bounded MSC M belongs
to M (the behavior on MSCs that are not ∃-B-bounded is of no concern in
this section). To this aim, we use the set of traces tr(M ∩ MSCB) that can be
accepted by an asynchronous automaton B, this asynchronous automaton will
be simulated by the CFM A. The simulation of B at receive-events p?q is easy:
the CFM has access to its previous state at process p and to the state at the
matching send event q!p. A problem arises at send-events p!q: because of the
rev-edges in tr(M), the asynchronous automaton has access to the state at the
send-event event s that is connected to the current event by an rev-edge. But the
CFM cannot read the state at this node. To overcome this problem, the CFM
will guess the state at s. The notion of a good labeling captures the idea that
these guesses shall be correct. In order to check the correctness by the CFM,
guesses will be sent to process q. Process q will keep track of previous states and
check that the guess was correct.

Let K be a finite set, M = (E, λ,msg, (<p)p∈P) an MSC. Furthermore, let
γ : E → K be a mapping and k0

p ∈ K for p ∈ P. Then, for t ∈ Ep, γ−(t) = γ(s)
if s is the predecessor of t on process p. If no such predecessor exists, γ−(t) = k0

p.
Furthermore, we define γm(t) = γ(s) if msg(s) = t. If there is r ∈ E with
rev(r) = t, then γm(t) = γ(r). If λ(t) = p!q is a send-event, but there is no
s ∈ Eq with rev(s) = t, then γm(t) = k0

q .
We say that γ : E → K is a good labeling of M with respect to the mapping

update : Σ ×K ×K → 2K and the values (k0
p)p∈P if γ(t) ∈ update(λ(t), γ−(t),

γm(t)) for any t ∈ E.

Proposition 6.2. Let update : Σ × K2 → K be a mapping and k0
p ∈ K for

p ∈ P. Then there exists a CFM A with local state set Ωp×KΩp×{0, . . . , B−1}Σ
p

for p ∈ P and all global states accepting with the following properties for any
MSC M :
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(1) if ρ is a run of A on M , then the labeling γ defined by γ(t) = mem(e) if
ρ(t) = (e,mem, cnt) is good with respect to update and (k0

p)p∈P .
(2) if γ′ is a good labeling with respect to update and (k0

p)p∈P , then there exists
a run ρ with γ = γ′ (where γ is defined as in (1)).

Proposition 6.3. Let B ∈ N and M a set of ∃-B-bounded MSCs with LinB(M)
regular. Then there exists a CFM A′ with L(A) ∩ MSCB = M.

Thus, we succeed in building a CFM that checks membership in M provided
that the input is ∃-B-bounded. The construction of a CFM A′ which accepts
precisely MSCB is technically involved and can be found in the full version of
this paper. Taking the direct product of these two machines shows that M can
be accepted by a CFM whenever LinB(M) is a regular set of representatives.

Theorem 6.4. Let M be a set of MSCs with LinB(M) a regular set of repre-
sentatives of M. Then there exists a CFM A with L(A) = M.

7 Further Results

In section 4.1, we explained how to do model-checking of two models when their
sets of B-bounded linearizations are regular sets of representatives. Our Main
Theorem 5.1 describes the models for which the set of B-bounded linearizations
is a regular set of representatives, in terms of (E)MSO logics, communicating
automata and CMSC-graphs.

We can even test negative model-checking - L(A) ∩ L(B) = ∅ - when there
exists a regular set of representatives X ⊆ LinB(A) and LinB(B) is regular (but
might not be a set of representatives). The proposition below summarizes several
decidable model-checking instances:

Proposition 7.1. Let A and B be two MSC formalisms. Then both L(A) ∩
L(B) = ∅ and L(A) ⊆ L(B) are decidable when

– A is a safe CMSC-graph or an ∃-B-bounded CFM, for some B > 0.
– B is either a CFM, or an MSO(≤,msg) formula, or a globally-cooperative

CMSC-graph.

Among the model-checking instances covered by the proposition above, the
only case that was already known is model-checking of a safe CMSC-graph
against an MSO(≤,msg) formula [21]. This problem has non-elementary com-
plexity, and let us briefly discuss the complexity of the remaining instances.
First, given a bound B and a CFM A, we obtain for LinB(A) an automaton
that is exponential only in the number ℘ of processes. For a gc-CMSC-graph G
we get an automaton that is exponential in |G| (Proposition 5.4). Thus, for B
either a CFM or a gc-CMSC-graph, negative model-checking L(A) ∩ L(B) = ∅
is in PSPACE and positive model-checking L(A) ⊆ L(B) is in EXPSPACE.

We also showed that gc-CMSC-graphs are quite expressive, since they are
equivalent to existentially bounded CFMs. An equivalent gc-CMSC-graph of size
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℘!(B|A|)℘ can be constructed from an ∃-B-bounded CFM A, that is exponential
only in the number of processes ℘.

Moreover, Theorem 5.1 shows that the logics EMSO(≤p,msg) and MSO((≤
,msg) are expressively equivalent over MSCB . By the proposition below, one
obtains even the equivalence of the logics EMSO(≤p,msg) and EMSO(≤,msg).

Proposition 7.2. Let ϕ be an (E)MSO(≤p,msg) formula with L(ϕ) ⊆ MSCB.
Then there exists an (E)MSO(≤) formula ϕ′ with L(ϕ) = L(ϕ′).

8 Conclusion

We proved an extension of Kleene’s theorem for ∃-bounded CFM, with a unified
technique using Mazurkiewicz traces.

One side result is that, since we can easily complement an MSO formula,
gc-CMSC-graphs and existentially B-bounded CFM are both closed under com-
plementation.

To sum up, the hardest part of the proof is to go from regular sets of repre-
sentatives to CFMs, which uses at a crucial stage Zielonka’s theorem. While this
result allows theoretically to implement MSO formulae and gc-CMSC-graphs
into CFMs, the result is of poor practical use, since deadlocks are unavoidable
in the implementation. Anyway, this is not a special issue with our implementa-
tion, since deadlock-free CFMs are too weak to model even some simple regular
languages. A further study of the expressivity of deadlock-free CFMs in term of
logics and CMSC-graphs would be interesting.
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Abstract. We propose algebraic and topological techniques that could
be employed for studying recombinant DNA processes. We show that
sequence of splices performed by the operation hi-excision/reinsertion
on one DNA molecule can be modeled by the elements of a semidirect
product of n-copies of the cyclic group of order 2 and the symmetric
group Sn. We associate a surface in space-time (subspace of R

3 × [0, 1])
with a sequence of splicings on circular molecules and present examples
of applications of this model.

1 Introduction

There have been extensive formal language theory models for various DNA re-
combinant processes. Most of these processes are considered as new models for
computation and are investigated for their computational power. In this aspect
much of the attention was put on the input/output results without studying the
whole process that occurs between the input and the output. In this paper we
suggest several ways of investigating these processes from algebraic and topo-
logical point of view, but not necessarily looking into the computational power
of these processes.

In living organisms such as ciliates, DNA molecules undergo certain recombi-
nant processes to reorganize themselves. A detailed description of the recombi-
nation from the micronuclear DNA into the macronuclear DNA in ciliates can be
found in the recent book [3]. These processes were proposed as a model for DNA
computing [14], and later it was shown that they have computational power
equivalent to a universal Turing machine [15]. One operation that has been the
subject of various investigations is DNA splicing (see for example [8, 20]). An
accessible account of the DNA structure and splicing by the endonucleases is
presented in the introductory chapter of [20]. A particular splicing is depicted
in Fig. 1, and symbolically, it can be written as follows:

(a0va1, b0vb1)
p→ (a0vb1, b0va1).
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In this expression, the symbols that make up the sequences of words a0, a1, b0,
b1, v are A-T , C-G pairs. An endonuclease enzyme recognizes the subsequence v
in the pair of larger sequences (a0va1, b0vb1), cuts at the site v, and splices them
after switching their positions as shown in Fig. 1. Another enzyme, a ligase, joins
the phosphodiester bonds of the nicked molecules. In general, different enzymes
may have the same overhangs, such that this recombination is possible with
different enzymes. In the above description we may assume that v represents the
overhang produced by the enzyme. The above specific pair of sequences may be
segments of two DNA molecules involved in the process, or may be part of a
single molecule.

a0 a1

b0 b1

v

v

a0 a1

b0 b1

a0

b0

a1

b1

Fig. 1. Splicing DNA molecules by an enzyme

With this paper we propose algebraic and topological models for investigat-
ing similar recombinant processes among DNA molecules. We concentrate on
the sequence of individual steps of such processes, rather than just inputs and
outputs involved and propose mathematical models that can be used for study-
ing such processes. If we denote h = (a0va1, b0vb1) and h′ = (a0vb1, b0va1), the
above splicing operation can be written as h

p→ h′. Then a process of gene as-
semblies in a living organism or in DNA computing that is based on the splicing
operation can be written as a sequence:

p : h0
p1→ h1

p2→ · · · pn→ hn

where n is the number of individual steps leading from the input h0 to the output
hn (splicings in this particular case). The structure and length of sequences
p1, p2, . . . , pn that for a given input produce the same output is the subject of
this discussion.

Our motivation for considering processes and their equivalences is two fold:

– In living organisms, not only the inputs and outputs, but also the whole
process of producing outputs from given inputs are of importance. When
theoretically there are more than one way of producing the same output (for
example the functional genes in the macronuclear DNA in ciliates) from a
given input (for example the micronuclear DNA in ciliates), it is of interest to
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understand which one of the possible processes happened. In fact, many ex-
periments are designed to study the intermediate processes of recombination
since both the input and the output are already known.

– In biomolecular computing, complexities of computing processes [7] have
been considered. Consider sequences of individual steps that produce the
same outputs from a given input. For evaluating or minimizing computa-
tional complexities, it is important to list these steps algebraically and/or
topologically, and by examining their properties to study the relationships
among different processes.

In mathematics, these problems can be related to the problem of finding
the shortest word representation in groups, similarly as in combinatorial group
theory (see for example [16]), or to characterize mathematical objects by means
of category theory (see background in [17]). The purpose of this paper is to show
how recombinant DNA processes can be modeled from a point of view of category
theory or group theory, and to examine certain type of splicing processes from
this perspective.

Our second purpose is to propose studying DNA processes topologically. Sev-
eral applications of knot theory to DNA are already known [2, 4, 24]. When a
sequence of splicings appear among circular DNA molecules, it is natural to
investigate topological aspects of such processes, and study rewriting processes
topologically. In fact, the number of crossings that are necessary to obtain one
knot from another is discussed from a point of view of recombinant DNA pro-
cesses in [2]. We point out here that a natural topological setting to repre-
sent DNA recombinant processes already exists within the theory of surfaces in
the space-time. We describe how this theory applies to the processes of DNA
molecules.

The paper contains two parts. The first part introduces algebraic ideas and
shows how concepts from group theory and category theory can be used to
study recombinant DNA processes. We mainly concentrate on the operation
of excision/reinsertion (hi) that was originally introduced as one of the op-
erations that are performed during the gene assembly process in ciliates (for
details see [3]). We show that there is a one-to-one correspondence between
the elements of the semi-direct product Hn = Zn

2 � Sn and the number of
non-equivalent sequences of hi-operations on one molecule. Then we show how
category theory can be used in studying similar processes between different
molecules.

The second part of the paper describes how a surface in space-time can be
associated with a sequence of splicings of circular molecules. This surface in
general may be knotted and we show how results from knot theory can be directly
applied to studying differences in such processes. We show how the genus of the
surface can be used as a complexity measure, how to estimate the number of
individual steps in a given process and how on a first glance “same” processes
can be topologically different.



52 N. Jonoska and M. Saito

2 Algebraic Models

In this section, we show how group theory, in particular braid groups and, more
generally category theory, can be used to model some DNA splicing processes. An
alphabet Δ is a finite non-empty set of symbols. We concentrate on the special
case when the alphabet is {A,G,C, T} representing the DNA nucleotides. A
word u over Δ is a finite sequence of symbols in Δ. We denote by Δ∗ the set of
all words over Δ, including the empty word 1.

The mapping ν : Δ → Δ defined by ν(A) = T , ν(T ) = A, ν(C) = G,
ν(G) = C is an involution on Δ and can be extended to a morphic involution of
Δ∗. Since the Watson-Crick complementarity appears in a reverse orientation,
we consider another involution ρ : Δ∗ → Δ∗ defined inductively, ρ(s) = s for
s ∈ Δ and ρ(us) = ρ(s)ρ(u) = sρ(u) for all s ∈ Δ and u ∈ Δ∗. This involution
is antimorphism such that ρ(uv) = ρ(v)ρ(u). The Watson-Crick complement

←
u

of a DNA strand u, then, is obtained by the antimorphic involution ρν(u) =
νρ(u) =

←
u . The involution ρ reverses the order of the letters in a word and as

such is used in the rest of the paper.

2.1 Braid and Symmetric Groups

This first subsection concentrates on a single molecule recombination process, in
particular the splicing operation called hi in [3] (see also references there). This
operation (called hi-excision/reinsertion) is considered to be one of the three
operations involved in the assembly of the macro-nucleus from the micronucleus
in ciliates. First we concentrate on processes that involve only this operation. Let
v ∈ Δ∗ represent the recognition site or a pointer for the excision. The operation
hi relative v is defined in the following way:

XvA
←
v Y

hi−→Xv
←
A
←
v y

Consider a single linear DNA molecule M ∈ Δ∗ with a sequence represented
by M = XvAvB

←
v Y . The splicing by hi operation depicted in Fig. 2, performed

at the first and the last site v changes this sequence to M ′ = Xv
←
B
←
v
←
A
←
v Y .

Hence the order of A and B is switched and the words are reversed. Since most
enzymes have palindromic recognition sites, we will assume that v =

←
v , and will

anneal and ligate

X

Y
CC
GG ATC

TAG G
C

CC
GG C

G
ATC
TAG

5’

3’

5’

3’ A

v

B
GG
CC

ATC
TAGG

C

TAG
ATC

G
C

CC
GG

B

v

AX

Y

5’ 3’ 5’

5’3’ 3’

3’3’

3’ 5’

5’

5’

A
ATC
TAG

ATC
TAG

C
B

v

Y

X GG
CC

C
G

G
GG
CC

5’

3’

5’

3’

enzyme cuts flip

Fig. 2. The operation hi relative v on molecule M = XvAvB
←
v Y . The enzyme

recognition site is v =5′
GGATCC3′

with a cut that leaves ATC as a 3′ overhang
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write M ′ = Xv
←
B v

←
A vY . We denote this transformation by σ and write

M
σ→ M ′.
If the splicing occurs at the first and the second recognition site then the

result is M ′′ = Xv
←
A vBvY . In this case the sequence A is substituted by

its Watson-Crick complement. We denote this transformation by τ and write
M

τ→ M ′′.
Consider a single molecule M = XvA1vA2v . . . vAi−1vAivAi+1v . . . vAnvY .

Denote by σi the transformation of type σ that swaps Ai with Ai+1 and replaces
them by their Watson-Crick complement, i.e.

Xv . . . vAivAi+1v . . . vY
σi−→Xv . . . v

←
Ai+1 v

←
Ai v . . . vY

This σi can be considered as the ith generator of the braid group Bn (see the
left of Fig. 3).

vA  vY

iσ

XvA  
1

XvA  1

vA  vYnvA     vA       vA  vA      vi+1i−1 i+2i

vA    vA  vA     vA     vi−1 i i+1 i+2 n

i

i

XvA  vA  v vA  vY

vA  vXvA  vA  vY1

1

i n

n

τ

Fig. 3. Graphical representation of the action of the two generators, σi in the left and
τi in the right

The braid group Bn is defined by a presentation

Bn = 〈σ1, . . . , σn−1| σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n− 2,
σiσj = σjσi, |i− j| > 1〉

where σi denote the generators. Graphical interpretations of generators and rela-
tions of Bn are depicted in Fig. 3. Since σiσi (i.e. performing the same operation
twice) brings back the original sequence, it is convenient in studying sequences
to substitute the braid group with the symmetric group Sn whose presenta-
tion is obtained from the presentation of Bn by adding relations σ2

i = 1 for all
i = 1, . . . , n− 1.

Denote with τi the transformation that replaces Ai with its Watson-Crick
complement. It is clear that by performing τi twice we obtain the original se-
quence back. Also, the order in which τ -transformations are performed is ir-
relevant. Hence we have that these transformations are generators of a direct
product of n cyclic groups of order 2: Zn

2 . Schematically τi is represented by
a � in the line that corresponds to Ai and we denote the two Watson-Crick
complements with a clear and shaded circle (see figure 3 to the right).
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Besides the individual relations within the symmetric group and the product
of Z2 there are relations between σ’s and τ ’s. It is not difficult to see that

τiσi = σiτi+1 and τi+1σi = σiτi.

This relator is schematically shown in Fig. 4. Furthermore, σ’s and τ ’s
commute if they are far apart.

vA  vYvA    vA     vA  vA     v

τi

τi+1

iσ

iσ

vA    vA     vA  vA     v

ivA    vA  vA     vA     v vA    vA  vA     vA     vi−1 i i+1 i+2 vA  vYn

i−1 i+1 i i+2i+2i

i+2i−1 i+1

i−1 i+1XvA  1

XvA  1 XvA  1

XvA  1

nvA  vY

vA  vYn n

Fig. 4. The relator connecting generators in Sn and in Z
n
2

Denote withHn the group with generators σi (i = 1, . . . n−1), τj (j = 1, . . . n)
and the above described relations:

σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n− 2), σiσj = σjσi (|i− j| > 1),
σ2

i = τ2
i = 1, τiτj = τjτi (i, j = 1, . . . , n), τiσj = σjτi (|i− j| > 1),

τiσi = σiτi+1, (i = 1, . . . , n− 1).

In fact, it is not difficult to see that Zn
2 is normal in Hn and we have the

short exact sequence:

0 −→ Zn
2 � Hn � Sn −→ 1

which shows that Hn is a semi-direct product of Hn = Zn
2 � Sn.

Let M = XvA1v . . . vAnvY be a molecule and v be a palindromic recognition
site for an enzyme. Assume further that Ai are distinct (Ai �= Aj for i �= j) and

they are not palindromic subsequences (Ai �=
←
Ai). A sequence of hi-operations

α = h1h2 · · ·hk changes M into another molecule M ′ denoted with M
α→ M ′.

We say that two sequences α and α′ are equivalent if M α→ M ′ and M
α′
→ M ′′

implies that M ′ = M ′′. Let S(M, v) be the set of all equivalence classes of such
sequences. By the above discussion we have the following proposition.

Proposition 1. For a DNA molecule M = XvA1v . . . vAnvY such that Ai �=
Aj and Ai �=

←
Ai there is a one-to-one correspondence between the elements in

S(M, v) and Hn = Zn
2 � Sn.

Moreover, consider the set H(M, v, hi) = {M ′ |M α→ M ′, α = h1 · · ·hs}
where each hj is an hi-operation. Then we have the following corollary.
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Corollary 1. #H(M, v, hi) = #Hn where # stands for cardinality.

We note a couple of possible applications. The group Hn is finite and hence
the word problem is solvable. So it is possible to determine whether two given
processes are equivalent in this model. The minimal length of a given element
when written as a sequence of generators can be determined. In that sense,
processes with minimal number of steps can be identified.

2.2 Category Theory

The above observations model only one type of operation obtained as a type of
DNA recombinant process. In [3] there are two additional operations, and some
of these processes involve interactions of different DNA segments, even segments
with graph structures. Furthermore, some processes can be performed on certain
molecules and not on all molecules. Thus we propose to use aspects from category
theory as a more suitable model. Roughly speaking, a category consists of a class
of objects O, and arrows between objects, called morphisms. More specifically,
for every ordered pair (X,Y ) of objects, there is a set of morphisms Hom(X,Y )
with composition of morphisms defined. The composition is defined for every
triple (X,Y, Z) of objects as a map

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z),

The image of (f, g) under this map is denoted by g ◦ f . A morphism f ∈
Hom(X,Y ) is also denoted by f : X → Y as usual. There are some conditions
to be satisfied by these, such as associativity.

For DNA recombinant processes in consideration, a category can be con-
structed as follows.

– (Objects.) Let M = {Mi | i ∈ I} be a set of DNA molecules. We assume
that it is a collection of DNA molecules (which include all possible inputs,
outputs, and all the molecules that appear in the middle steps of processes
in consideration). Then M is the set of objects of the category.

– (Morphisms.) Let P be the set of all possible operations (one-step recombi-
nant processes) between DNA molecules. For example, if a splicing operation
is represented with h

p→ h′ then this is an element of P. For such an oper-
ation, the input h and output h′ are uniquely specified. Denote them by
ι(p) and τ(p) respectively. Then the set of operations p with ι(p) = A and
τ(p) = B is the set of morphisms between A and B, where A,B ∈ M.
The trivial operation, of doing nothing to a given molecule, is the identity
morphism.

The goal of using categories is to generalize the Hn group approach to disjoint
union of linear DNA molecules and graph structures. In the previous section, the
action of hi-operation on a single linear molecule is associated to an Hn group.
A natural question is to identify the groups that are used for disjoint unions of
linear segments, and maybe even graph structures. Groups that are analogous
to Hn can be used, and such associated groups are of interest. It is expected
that these groups could be found from the corresponding category.
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3 Topological Models

To simplify our argument, in this section, we assume that all DNA molecules are
circular. hus, in this section. a symbol representing a DNA molecule denotes a
knotted and linked circles in 3-space. Our first goal is to describe our topological
model.

Claim. Surfaces embedded in the space-time can give a topological model for
DNA recombinant processes.

(A)

(B)

(C)

Fig. 5. A different view of a splicing

We explain our claim step by step in a series of figures.
First we explain how a splicing process corresponds to changes on a surface.

Figure 5 (A) depicts a splicing process, where arcs represent part of dsDNA
molecules. They are not necessarily oriented, but to help visualization the ori-
entations are locally given and represented by arrows. The recognition site is at
the dotted line and the molecules are lined such that both sites have overhangs
at the same direction. When applied to single stranded DNA or RNA, then the
arrows in the figure define the orientation of the molecules. In Fig. 5 (B), the
same process is depicted from a different perspective. In this case the overhangs
of the cleavages are oppositely oriented. The figure (C) explains why process (B)
follows from (A), and vice versa. The process (B) is called a surgery between arcs.

Next we observe that the surgery corresponds to a saddle point of a surface
as depicted in the left of Fig. 6. When the graph of such a surface with a saddle
is sliced by “level surfaces,” the top slice and bottom slices are as depicted in the
right of Fig. 6. Thus the process of splicing of DNA molecules can be topologically
identified with the continuous cross sections of a surface of a saddle.

Similarly, discarding or adding a small loop of DNA molecules can be regarded
as minimal and maximal points of a surface (a bowl and an up-side down bowl).
These three types of points, maximal, minimal, and saddle points are called
(non-degenerate) critical points of a surface with respect to a height function
(the z-coordinate direction).

A process of circular DNA splicing consists of a sequence of splices, discard-
ing/adding a small loops, which can be considered as the critical points on the
surface. Thus as a whole, a process corresponds to a surface in R3 × [0, 1], the
space-time, which is a 4-dimensional space. The unit interval [0, 1] represents
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Fig. 6. A splicing is a saddle point

Fig. 7. A splicing process represents a surface

the time direction, and can be regarded as if the process occurred between the
time t = 0 and t = 1. Figure 7 depicts an example, where the corresponding
surface is depicted in the left. The circular DNA molecules that appear during
the splicing process are depicted in the right.

A caution is needed in Figs. 6 and 7. Although the surfaces are depicted as
objects in 3-space in these figures, in general they are lying in the space-time,
or 4-dimensional space, R3 × [0, 1]. In fact, the cross sectional curves depicted
should be regarded as curves in 3-space, instead of a plane. In general they could
be knotted or linked. Since it is impossible to draw figures in dimension 4, we
used the convention that the cross sections are drawn on the plane, and the
surfaces are depicted in R2 × [0, 1]. An alternate way to see the figures is to
regard the surfaces as projections of surfaces in R3 × [0, 1] into R2 × [0, 1]. See
[1] for more details.

We note that surfaces are classified by its genus, orientability and the number
of boundary components. More precisely (see for example [18]):

Two compact surfaces F and F ′ are homeomorphic if and only if both are
orientable or both are non-orientable, they have the same genus g(F ) = g(F ′),
and the same number of boundary components b(F ) = b(F ′).
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S F0
2

N1

T2 F1 F2

N2

Fig. 8. Classification of surfaces. At the top: a sphere, a torus and a double torus which
are orientable surfaces with genus 0,1, 2, respectively. At the bottom: a projective plane
(obtained by cupping off a Möbius strip with a disk), and the Klein bottle (obtained
by tubing two projective planes). These are non-orientable surfaces of genus 1 and 2,
respectively. All of these surfaces have no boundary components

We present a few applications of this topological model in the form of
examples.

3.1 The Bounding Genus as Topological Complexity in Splicing
DNA

Suppose that a process of splicing DNA p : h1
p1→ h2

p2→ · · · pn→ hn+1 consists of
circular DNAs at every step so that it can be modeled by a surface in R3×[0, 1] as
proposed above. Denote the corresponding surface F and consider its boundary
∂F ∩ R3 × {i} = Li, for i = 0, 1. Thus ∂F = L0 ∪ L1, that are the input (L0)
and the output (L1) of the process.

We propose to use the genus of F , g(F ), as a topological complexity measure
of such processes. We call g(F ) the genus of the given process p. For example,
the process depicted in Fig. 7 has genus 1. The genus can be also regarded as a
“distance” between two DNA molecular configurations, say input/output, and
it can define a “metric” among molecules. This problem has already been con-
sidered when the splicing is performed by “crossing” changes instead of surgery.
The distances and classifications were given in [2].

We formulate a problem that is of interest from both points of view, topo-
logically and for DNA computing:

Problem: For given input and output sets of circular molecules, determine the
minimal genus for splicing processes leading the input to the output. In other
words, find the minimal genus of the surfaces cobounded by the links correspond-
ing to the DNA molecules of input and output.

The corresponding problem for “crossing change” was considered in [2] but
little seems to be known when both surgery and crossing, or just surgery changes
are allowed.
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For example, if the input is the unknot and the output is a trefoil knot,
then it is known that the invariant called the signature of knots determines that
the minimal genus of the process is 1. As in this example, if the input is the
unknot, then the problem is to determine the minimal genus of surfaces spanned
in 4-dimensional ball for a given knot or a link L on the boundary, S3, of the
4-ball. Such a genus is called the 4-ball genus, or the slice genus of L. There is a
standard argument to reduce the above formulated problem for an input link L0
and an output link L1, to the slice genus problem for the link L0#(rL1) obtained
by the connected sum (a link obtained by two links by connecting them by a
band). There are extensive studies on slice genus, and significant progress has
been made recently (see [13, 19, 21], for example).

In summary, we pointed out here that the slice genus can be used as a com-
putational complexity in DNA computing, and recent results in this area of knot
theory can be directly applied.

3.2 Estimating Numbers of Steps Necessary in DNA Splicing

In this example we consider situations where an input is a circular DNA molecule
K0 and so is an output, K1. By our topological model, a process that changes
K0 to K1, consisting of steps that are either splicing, adding or deleting small
loops, corresponds to a surface in R3 × [0, 1] bounded by K0 ⊂ R × {0} and
K1 ⊂ R × {1}.

It was proved in [9] that the number c(F ) of critical points of a surface F
in the upper 4-space bounded by a given knot K in the 3-space (which is the
boundary of the upper 4-space) is bounded from below by m(K) + 1,

c(F ) ≥ m(K) + 1,

where the surface F is assumed to be orientable, and m(K) denotes the minimal
size of square matrices, called Alexander matrices, associated to a given knot K.
See [12] for the case of links (with multi-components).

If K1 is unknotted, then this result can be applied directly, as follows. Cap
off K1 with a standard disk D in R3 × {1} to obtain a surface F0 = F ∪ D in
R3 × [0,∞) bounded by K0, to which we apply the above result. Then we have
c(F0) ≥ m(K0) + 1, and regarding D as a maximum, we have c(F0) = c(F ) + 1.
Thus we obtain c(F ) ≥ m(K0). As an example, take a square knot Ks, the
connected sum of a trefoil knot (the simplest knot with three crossing points)
and its mirror image. Let K(n)

s be the n-fold connected sum of Ks. It is known
that Ks bounds a disk in the upper 4-space, so does K, so that the genus as
complexity does not apply to this example (the slice genus of K(n)

s is zero). It is
known that m(K(n)

s ) = 2n (the fact that all summands are either trefoil and its
mirror image is critical here). Hence for K0 = K

(n)
s and K1 =unknot, we have

c(F ) ≥ 2n. In fact, it is easy to construct a surface F with c(F ) = 2n, so that
the minimal number of steps necessary is precisely determined to be 2n.

More generally, denote by c(K) the minimal number of c(F ) for a given K
over all possible surfaces F bounded byK. Let F be a surface bounded byK0 and
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K1, then we have c(K0) ≤ c(F )+c(F1), so that we obtain c(F ) ≥ c(K0)−c(F1),
where F1 is a surface in R3 × [1,∞) bounded by K1. Thus, finding small value of
c(F1) would give better estimates of c(F ), the minimal number of steps necessary
for a given process.

t=2t=1t=0 t=3

t=4 t=5 t=6 t=7

1/3 turn

t=8 t=9 t=10

Fig. 9. Turning a trefoil one-third during a process

3.3 Topological Inequivalence Between Processes

In this section we present examples of two processes with the same number of
steps, and with the same knot and links at every instance of time, but topolog-
ically distinct.

Consider the example depicted in Fig. 9, which is found in [23]. At time t = 0,
the process starts with two component unknotted, unlinked circles, and at t = 10,
the process ends with the same unlink, after going through two steps of splicings.
These splices occur between time t = 3 and t = 4, and t = 6 and t = 7. Between
time t = 4 and t = 5, one of the trefoil knot undergoes a one-third twist before
it is reattached to the other trefoil by splicing. Consider this process P , and
another process P0 where no one-third twist has occurred. From the processes
P and P0, we obtain two embedded tori T and T0, respectively, by capping off
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the top and the bottom unlinks by standard disks. It is known that T0 is indeed
knotted, while T is topologically equivalent to unknotted, standard torus. In
particular, T and T0 are not topologically equivalent, and so the processes P
and P0 are not equivalent either.

We conclude this section with two remarks that arise from this example:
(1) Even if two DNA processes have the same knots and links at every given
time, as a whole, the processes may not be topologically equivalent. (2) Topo-
logical methods in theory of knotted surfaces can be directly applied to studies
of topological aspects of DNA processes.
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giammarr@mat.uniroma2.it

3 Dip. Matematica e Informatica, Università di Catania, Catania, Italy
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Abstract. The aim of this paper is to give regular expressions for two-
dimensional picture languages. The paper focuses on a one-letter alpha-
bet case, that corresponds to the study of “shapes” of families of pictures.
A new diagonal concatenation operation is defined. Languages denoted
by regular expressions with union, diagonal concatenation and its clo-
sure are characterized both in terms of rational relations and in terms
of two-dimensional automata moving only right and down. The class
of languages denoted by regular expressions with union, column, row
and diagonal concatenation, and their closures are included in REC and
strictly contains languages defined by three-way automata, but they are
not comparable with ones defined by four-way automata. In order to
encompass a wider class of languages, we propose some new operations
that define languages that still lie in REC.

1 Introduction

A picture or two-dimensional string is a rectangular array of symbols taken from
a finite alphabet. Two-dimensional languages are nowadays a rich field of investi-
gation. Many approaches have been presented in the literature in order to gener-
alize formal languages theory to two dimensions. In [6] an unifying point of view
is presented: the family REC of picture languages is proposed as the candidate to
be “the” generalization of the class of regular one-dimensional languages. Indeed
REC is well characterized from very different points of view and thus inherits sev-
eral properties from the class of regular string (one-dimensional) languages. It is
characterized in terms of projections of local languages (tiling systems), of some
finite-state automata, of logic formulas and of regular expressions with alpha-
betic mapping. The approach by regular expressions is indeed not completely
satisfactory: the concatenation operations there involved are partial functions
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and moreover an external operation of alphabetic mapping is needed. Then, in
[6], the problem of a Kleene-like theorem for the theory of recognizable picture
languages remains open.

Several papers were recently devoted to find a better formulation for regular
expressions for two-dimensional languages. In [14], O. Matz affords the prob-
lem of finding some more powerful expressions to represent recognizable picture
languages and suggests some regular expressions where the iteration is over com-
binations of operators, rather than over languages. The author shows that the
power of these expressions does not exceed the family REC, but it remains open
whether or not it exhausts it. In [16] some tiling operation is introduced as ex-
tension of the Kleene star to pictures and a characterization of REC is given that
involves some morphism and the intersection. The paper [17] compares star-free
picture expressions with first-order logic.

The aim of this paper is to look for a homogenous notion of regular ex-
pression that could extend more naturally the concept of regular expression of
one-dimensional languages. In this framework, we propose some new operations
on pictures and picture languages and study the families of languages that can
be generated using old and new operations.

The paper focuses on one-letter alphabets. This is a particular case of the
more general case of several letters alphabets. However this is not only a simpler
case to handle, but it is a necessary and meaningful case to start. Indeed studying
two-dimensional languages on one-letter alphabets means to study the “shapes”
of pictures: if a picture language is in REC then also the language of its shapes
is in REC. Such approach allows us to separate the twofold nature of a picture:
its shape and its content.

Classical concatenation operations on pictures and picture languages are the
row and column concatenations and their closures. Regular expressions that use
only Boolean operations and this kind of concatenations and closure however
cannot define a large number of two-dimensional languages in REC. As an ex-
ample, take the simple language of “squares” (that is pictures with number of
rows equal to the number of columns). The major problem with this kind of
regular expressions is that they cannot describe any relationship existing be-
tween the two dimensions of the pictures. Such operations are useful to express
some regularity either on the number of rows or on the number of columns but
not between them. This is the reason we introduce, in the one-letter case, a
new concatenation operation between pictures: the diagonal concatenation. The
diagonal concatenation introduces the possibility of constructing new pictures
forcing some dependence between their dimensions. Moreover an important as-
pect of the diagonal concatenation is that it is a total function between pictures.
This allows to find a quite clean double characterization of D-regular languages,
the picture languages denoted by regular expressions containing union, diago-
nal concatenation and its closure: they are exactly those picture languages in
which the dimensions are related by a rational relation and also exactly those
picture languages recognizable by particular automata moving only right and
down. Relationships between rational relation and REC were also studied in [3].
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Unfortunately, an analogous situation does not hold anymore, when we also
introduce row and column concatenations in regular expressions, essentially be-
cause they are partial functions. The class of CRD-regular languages, the lan-
guages denoted by regular expressions with union, column, row and diagonal
concatenations and their closures, strictly lies between the class of languages
recognized by three-way deterministic automata and REC. Further it is not
comparable with another remarkable class lying in that set, that is the class of
languages recognized by four-way automata. These results can be proved using
a necessary condition for CRD-regular languages. This necessary condition re-
gards the possible extensions of a picture inside the language it belongs, that
are the pictures of the language containing it as a sub-picture. In a CRD-regular
language an infinite sequence of extensions of a picture in that language has
some kind of regularity: it necessarily contains a subsequence obtained iterating
the concatenation of a same sub-picture as many times as we want.

Examining some examples of languages not captured by CRD formalism,
we find that the extensions of a picture cannot be obtained by iterating the
concatenation of a same picture, and this independently from the picture to
what we concatenate. On the contrary the extensions grow in a non-uniform
way, indeed depending from the picture just obtained. Such considerations show
the necessity of a more complex definition for regular expressions in order to
denote a wider class of two-dimensional languages in REC. We propose some
other new definitions of operations on pictures. They allow to capture a wider
class of languages, that still remain inside the class REC.

All definitions are given in such a way to synchronize the extensions of a pic-
ture with the picture just constructed. We also provide a collection of examples
classically considered in the literature, specifying for each of them its belonging
or not to the classes of picture languages considered throughout the paper.

The paper is organized as follows. In Section 2 we recall some preliminary
definitions and results later used in the paper. Section 3 contains the main re-
sults. It presents our proposals for possible classes of regular expressions in three
different subsections. Moreover, we show a table summarizing a wide collection
of examples. Section 4 draws some conclusions.

2 Preliminaries

In this section we recall terminology for two-dimensional languages. We briefly
describe some machine models for two-dimensional languages; all models reduce
to conventional ones when restricted to operate on one-row pictures. Finally we
summarize all major results concerning the class of Recognizable Two-Dimen-
sional Languages, that is the one that seems to generalize better the family of
regular string languages to two dimensions. The notations used, as far as more
details, can be mainly found in [6].

Let Σ be a finite alphabet. A two-dimensional string (or a picture) over Σ
is a two-dimensional rectangular array of elements of Σ. The set of all two-
dimensional strings over Σ is denoted by Σ∗∗. A two-dimensional language over
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Σ is a subset of Σ∗∗. Given a picture p ∈ Σ∗∗, let �1(p) denote the number of
rows of p and �2(p) denote the number of columns of p. The pair (�1(p), �2(p))
is called the size of the picture p. Differently from the one-dimensional case, we
can define an infinite number of empty pictures namely all the pictures of size
(m, 0) and of size (0, n), for all m,n ≥ 0, that we call empty columns and empty
rows, and denote by λ0,n and λm,0 respectively. The empty picture is the only
picture of size (0, 0) and it will be denoted by λ0,0. We indicate by Λcol and Λrow

the language of all empty columns and of all empty rows, respectively.
The column concatenation of p and q (denoted by p �q) and the row con-

catenation of p and q (denoted by p �q) are partial operations, defined only if
�1(p) = �1(q) and if �2(p) = �2(q), respectively, and are given by: p �q = p q

and p �q =
p
q
. Moreover we set that p �λm,0 = p and p �λ0,n = p that is the

empty columns and the empty rows are the neutral elements for the column and
the row concatenation operations, respectively. As in the string language theory,
these definitions of pictures concatenation can be extended to set of pictures.
Let L1, L2, L ⊆ Σ∗∗. The column concatenation and the row concatenation of
L1 and L2 are defined respectively by L1

�L2 = {p �q| p ∈ L1, q ∈ L2} and
L1

�L2 = {p �q| p ∈ L1, q ∈ L2}. By iterating the concatenation operations, we
can define their transitive closures, which are somehow “two-dimensional Kleene
stars”. The column closure (star) and the row closure (star) of L are defined as
L∗

�
=

⋃
i≥0 L

i �
and L∗

�
=

⋃
i≥0 L

i �
, where L0 �

= Λcol, L
1 �

= L, Li �
=

L �L(i−1) �
for i > 1 and L0 �

= Λrow, L
1 �

= L, Li �
= L �L(i−1) �

for i > 1.
One of the first attempts at formalizing the concept of “recognizable

picture language” was the introduction of a finite automaton that reads a
two-dimensional tape (cf. [2]). A deterministic (non-deterministic) four-way au-
tomaton, denoted by 4DFA (4NFA), is defined as extension of the two-way
automaton for strings (cf. [7]) by allowing it to move in four directions: Left,
Right, Up, Down. The families of picture languages recognized by some 4DFA
and 4NFA are denoted by L(4DFA) and L(4NFA) respectively. Unlike in the
one-dimensional case, L(4DFA) is strictly included in L(4NFA) (cf. [2]). Both
families L(4DFA) and L(4NFA) are closed under Boolean union and intersec-
tion operations. The family L(4DFA) is also closed under complement, while for
L(4NFA) this is not known. On the other hand, L(4DFA) and L(4NFA) are not
closed under row and column concatenation and closure operations [11].

In [13], it is considered also a weaker model called three-way automaton
(3NFA) that is allowed to move right, left and down only. The family L(3NFA) is
strictly included in L(4NFA). Another interesting model is the two-dimensional
on-line tessellation acceptor, denoted by 2-OTA (see [8]).

A different way to define (recognize) picture languages was introduced in [5].
It generalizes the characterization of regular languages by means of local strings
languages and alphabetic mapping to two dimensions. A local picture language
L over an alphabet Γ is defined by means of a finite set Θ of pictures of size
(2, 2) (called tiles) that represents all allowed sub-pictures for the pictures in
L. A tiling system for a language L over Σ is a pair of a local language over
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an alphabet Γ and an alphabetic mapping π : Γ → Σ. The mapping π can be
extended in the obvious way to pictures and picture languages over Γ . Then,
we say that a language L ⊆ Σ∗∗ is recognizable by tiling systems if there exist a
local language L′ over Γ and a mapping π : Γ → Σ such that L = π(L′). The
family of two-dimensional languages recognizable by tiling systems is denoted by
REC. The family REC is closed under Boolean union and intersection but not
under complement. It is also closed under all row and column concatenations and
stars. Moreover, by definition, it is closed under alphabetic mappings. This no-
tion of recognizability by tiling systems turns out to be very robust : we have that
REC = L(2-OTA) ([10]) and that the family REC and the family of languages
defined by existential monadic second order formulas coincide (as a generaliza-
tion of Büchi’s theorem for strings to two-dimensional languages; cf. [6]).

3 Two-Dimensional Regular Expressions on One-Letter

The characterizations of the family REC show that it captures in some sense the
idea of unification of the concept of recognizability from the two different points
of view of descriptive and computational models, that is one of the main prop-
erties of the class of recognizable string languages. It seems thus natural to ask
whether one can prove also a sort of two-dimensional Kleene’s Theorem, but the
definitions of regular operations that consider row and column concatenations
and stars seem not to be satisfactory for this aim. One reason of this fact could
be attributed to the fact that the row and column concatenation operations are
partial functions. Using concatenation and closure operations, it is possible to
express two-dimensional languages by means of simpler languages. Nevertheless
it can be easily observed that row and column concatenations and stars cannot
be used to define any relation between the two dimensions of a picture: it can be
shown (cf. [6]) that to describe the whole class REC we need also the alphabet
mapping between the regular operations. For example, the simple language of
“squares” (see Section 2) cannot be described by a regular expression that uses
this kind of operations. This is also a clear sign that, going from one to two di-
mensions, we find a very rich family of languages that need a non-straightforward
generalization of the one-dimensional definitions and techniques.

In this section we propose some different types of regular expressions com-
paring the resulting classes of denoted languages with known families of picture
languages. Through all the section, we assume to be in the case of languages
over a one-letter alphabet Σ = {a}. Observe that this corresponds to consider
the “shapes” of pictures. Indeed if L ⊆ Σ∗∗, with |Σ| ≥ 2, is in REC then the
language obtained by mapping Σ into a one-letter alphabet {a}, is still in REC,
since REC is closed under alphabetic mappings. All the families of languages
over a one-letter alphabet will be denoted by adding a superscript ”(1)”. For
example all languages in REC over Σ = {a} will be denoted by REC(1).

Remark 1. When a one-letter alphabet Σ is considered, any picture p ∈ Σ∗∗ is
characterized only by its size. Therefore it can be equivalently represented either
by a pair of words in Σ∗, where the first one is equal to the first column of p and
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the second one to the first row of p, i.e. (a�1(p), a�2(p)), or simpler by its size, i.e.
(�1(p), �2(p)).

3.1 Diagonal Concatenation and D-Regular Expressions

We introduce a new simple definition of concatenation of two pictures in the
particular case of a one-letter alphabet. The definition is motivated by the ne-
cessity of an operation between pictures that could express some relationship
existing between the dimensions of the pictures. We use this new concatenation
to construct some regular expressions and to define a class of languages. This
class is characterized both in terms of the relations between the dimensions of
the pictures and in terms of four-way automata. Let Σ = {a}.

Definition 1. The diagonal concatenation of p = (m,n) and q = (m′, n′) (de-
noted by p �\ q) is the picture of size (m+m′, n+ n′). It is represented by

p �\ q =
p

q

Observe that, differently from the classical row and column concatenation,
the diagonal concatenation is a total operation. As usual, it can be extended
to diagonal concatenation between languages. Moreover the Kleene closure of �\

can be defined as follows. Let L be a picture language over a one-letter alphabet.

Definition 2. The diagonal closure or star of L ⊆ {a}∗∗ (denoted by L∗
�\ ) is

defined as L∗
�\ =

⋃
i≥0 L

i �\ where L0 �\ = λ0,0, L
1 �\ = L, Li �\ = L �\ L(i−1) �\

for i > 1.

Example 1. Let Ln,n = {p | �1(p) = �2(p) ≥ 1}, the language of squares. It can
be easily shown that Ln,n = {(1, 1)}∗ �\ = {λ0,1

�\ λ1,0}∗
�\ .

Proposition 1. The family REC(1) is closed under diagonal concatenation and
diagonal star.

Proof. The proof uses similar techniques to the one for the closure of REC under
row (or column) concatenation and star ([5]). A tiling system for L1

�\ L2 can be
defined from the ones for L1 and L2, adding some tiles to “glue” bottom-right
corners of pictures in L1 to top-left corners of pictures in L2.

The diagonal concatenation can be used to generate families of picture lan-
guages, starting from atomic languages. Formally, let us denote D = {∪, �\ , ∗ �\ };
the elements of D are called diagonal-regular operations or D-regular operations.

Definition 3. A diagonal-regular expression (D-RE) is defined recursively as:

1. ∅, {λ0,1}, {λ1,0} are D-RE
2. if α, β are D-RE then (α) ∪ (β), (α) �\ (β), (α)∗

�\ are D-RE.



Regular Expressions for Two-Dimensional Languages 69

Every D-RE denotes a language as usual. Languages denoted by D-RE are
called diagonal-regular languages, briefly D-regular languages. The class of D-
regular languages is denoted L(D). Observe that languages containing a single
picture (n,m) can be denoted by the D-RE En,m = (λn �\

1,0 ) �\ (λm �\
0,1 ).

We will now characterize D-regular languages both in terms of rational rela-
tions and in terms of some 4NFA. Let us recall that (see [1]) a rational relation
over alphabets Σ and Δ is a rational subset of the monoid (Σ∗ ×Δ∗, ., (λ, λ)),
where the operation . is the componentwise product defined by (u1, v1).(u2, v2) =
(u1u2, v1v2) for any (u1, v1), (u2, v2) ∈ Σ∗ ×Δ∗. When the alphabet Σ = Δ =
{a} is considered, there is natural correspondence between pictures over Σ and
relations over Σ × Σ. For any relation T ⊆ Σ∗ × Σ∗ we can define the picture
language L(T ) = {p ∈ Σ∗∗ | �1(p) = |r1| and �2(p) = |r2| for some (r1, r2) ∈ T}.
Vice versa, for any picture language L ⊆ Σ∗∗ we can define the relation R(L) =
{(r1, r2) ∈ Σ∗ ×Σ∗| |r1| = �1(p) and |r2| = �2(p) for some p ∈ L}.

Remark 2. We recall that a 4NFA M over a one-letter alphabet is equivalent to
a two-way two-tape automaton M1 (cf. [9]). In fact, let H1 and H2 be the heads
of M1, then M1 simulates M as follows. If the input head H of M moves down
(up) one square, M1 moves H1 right (left) one square without moving H2, and if
H moves right (left) one square, M1 moves H2 right (left) without moving H1.

Proposition 2. Let L ⊆ {a}∗∗. Then L ∈ L(D) if and only if L = L(T ) for
some rational relation T ⊆ Σ∗ ×Σ∗ if and only if L = L(A) for some 4NFA A
that moves only right and down.

Proof. Let M = Σ∗×Σ∗. The componentwise product in M exactly corresponds
to the diagonal concatenation inΣ∗∗ (see Definition 1 and Remark 1). It is known
that a non-empty rational subset of a monoid can be expressed, starting with
singletons, by a finite number of unions, products and stars. Thus L ∈ L(D) if
and only if L = L(T ) for some rational relation T ⊆ M . On the other hand, it is
well known that T ⊆ M is a rational relation iff it is accepted by a transducer,
that is an automaton over M . Further this automaton can be viewed as a one-
way automaton with two tapes (cf. [15]). Then, in analogy to Remark 2, one-way
two-tape automata are equivalent to 4NFA that move only right and down.

Example 2. Let Ln,n be the language of squares, as in Example 1. It can be
easily shown that Ln,n is denoted by the following D-RE: En,n = (λ0,1

�\ λ1,0)∗
�\ .

We have Ln,n = L(T ), where T is the rational relation T = {(an, an) | n ≥ 1}.
Further L = L(A) where A is the 4NFA that starting in the top-left corner moves
along the main diagonal until it eventually reaches the bottom-right corner and
accepts. More generally, the languages Ln,n+i = {p | l1(p) = n, l2(p) = n+i, n ≥
1}, for some i ≥ 0, are denoted by the D-RE: En,n+i = En,n

�(((λi �\
0,1

�\ λ1,0))∗
�
).

The following example shows that also for a one-letter alphabet, four-way
automata that move only right and down are strictly less powerful than 3DFA.
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Example 3. Language L = {(kn, n)| k, n ≥ 1} is recognized by a 3DFA that,
starting in the top-left corner moves along the main diagonal until it reaches the
right boundary and then moves along the secondary diagonal until it reaches the
left boundary and so on until it eventually reaches some corner and accepts. By
Proposition 2, language L cannot be recognized by a four-way automaton that
moves only right and down, since {(akn, an)| k, n ≥ 1} is not a rational relation
(see [3]).

3.2 CRD-Regular Expressions

In this section we consider regular expressions involving all three concatenations
and corresponding stars, as defined in previous sections. We show that the class
of denoted languages, denoted by L(CRD), is strictly included in the family
REC, and strictly contains L(3DFA)(1). Further we show that L(CRD) is not
comparable with L(4NFA)(1).

Let CRD = {∪, �, �, �\ , ∗ �, ∗ �, ∗ �\ }, where C, R, D stand for “column”,
“row” and “diagonal”. The elements of CRD are called CRD-regular operations.

Definition 4. A CRD-regular expression (CRD-RE), is defined recursively as:
1. ∅, {λ0,1}, {λ1,0} are CRD-RE
2. if α, β are CRD-RE then (α)∪(β), (α) �(β), (α)∗

�
, (α) �(β), (α)∗

�
, (α) �\ (β),

(α)∗
�\ are CRD-RE.

Every CRD-RE denotes a language using the standard notation. Languages
denoted by CRD-RE are called CRD-regular languages. The family of CRD-
regular languages (over a one-letter alphabet) will be denoted by L(CRD).

Example 4. Let L = {(n, k1(n+1)+k2(n+2)+k3(n+3) | n ≥ 1, k1, k2, k3 ≥ 0}.
Consider the languages Ln,n+i denoted by: En,n+i = En,n

� ((E1,i)∗
�
), as in

Example 2. Language L can be denoted by the following CRD-RE: E = E∗
�

n,n+1
�

E∗
�

n,n+2
�E∗

�

n,n+3.

Example 5. Let L = {(hn, hkn+n) | n, h, k ≥ 1 }. We have L = L1
�L2, where

L1 = {(n, kn) | n, k ≥ 1 } and L2 = {(hm,m) | m,h ≥ 1 }. If En,n is a D-RE for
the languages of squares (see Example 2) a CRD-RE for L is E = (E∗

�

n,n) �(E∗
�

n,n).

We now introduce the notion of extension of a picture p in a language L
in order to formulate a necessary condition for CRD-regular languages. The
condition concerns some regularity on infinite sequences of extensions of any
picture in the language.

Definition 5. Let Σ = {a}, L ⊆ Σ∗∗, p = (n,m), p′ = (n′,m′) ∈ L. Picture
p′ is a column-extension of p in L if n = n′ and m′ > m. Picture p′ is a row-
extension of p in L if n′ > n and m = m′. Picture p′ is a diagonal-extension of
p in L if n′ > n and m′ > m. In any of these cases, p′ is an extension of p in L.
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Definition 6. A sequence (p1, p2, . . .) of column- (row-, diagonal-, respectively)
extensions of p in L is strictly increasing if, for any i ≥ 2, pi is a column- (row-
diagonal-, respectively) extension of pi−1 in L. A strictly increasing sequence
(p1, p2, . . .) of column- (row-, diagonal-, respectively) extensions of p = (n,m)
in L with pi = (ni,mi) is looping if there exist some a, b, h, k ≥ 0 such that
ni = n+ a+ ih and mi = m+ b+ ik for any i ≥ 1.

Observe that for a strictly increasing looping sequence of column- (row-,
respectively) extensions, we necessarily have a = h = 0 (b = k = 0, respec-
tively).

Proposition 3. If L ∈ L(CRD) then for every p ∈ L, either p has only a finite
number of extensions in L or any strictly increasing sequence of extensions of p
in L has a looping subsequence.

Proof. Let r be CRD-regular expression for L. The proof is by induction on
the number of operators in r. The basis is obvious. Assume proposition is true
for languages denoted by CRD-regular expression with less than i operators,
i ≥ 1, and let r have i operators. There are seven cases depending on the
form of r: r = r1 ∪ r2, r = r1 � r2, r = r1 � r2, r = r1 �\ r2, r = r∗

�

1 ,
r = r∗

�

1 , or r = r∗
�\

1 . In any case, r1 and r2 denote some language L1 and
L2, respectively, that satisfies the condition. In the first case (r = r1 ∪ r2) the
result easily follows. We sketch the proof of the second case (r = r1 � r2);
the other cases can be handled using similar techniques and reasonings. If r =
r1 � r2 then L = L1

�L2. By inductive hypothesis both L1 and L2 satisfy
the condition. Let p ∈ L. Clearly, p = p1

� p2 for some p1 ∈ L1 and p2 ∈
L2. If p has only a finite number of extensions in L, we are done. Suppose,
instead, that p has an infinite number of extensions in L: so we have to prove
that any strictly increasing sequence of column- (row-, diagonal-, respectively)
extensions has a looping subsequence. We give some details only for diagonal
extensions; the other cases can be proved analogously. Then, suppose there exists
a strictly increasing sequence, s, of diagonal-extensions of p in L. Without loss
of generality, we can suppose that, from s, we can extract a subsequence s′

obtained by column concatenation of pictures of s′1, a strictly increasing sequence
of diagonal-extensions of p1 in L1, with pictures of s′2, a sequence of pictures in L2
with the same number of columns or a strictly increasing sequence of diagonal-
extensions of p2 in L2. Then, using the looping subsequences of s′1 and s′2, we
can obtain a looping subsequence of s.

Proposition 3 can be used to prove that some picture languages are not in
L(CRD), as shown in the following example. Analogous motivations can be used
to show that also the language L = {(n, n2) | n ≥ 1 } is not in L(CRD).

Example 6. Let L = {(2n, 2n) | n ≥ 1 }. Language L does not satisfy the condi-
tion in Proposition 3 and thus L �∈ L(CRD). Indeed, every picture in L has an
infinite number of extensions and any extension is a diagonal-extension because,
for any n ≥ 1, there is only one picture with 2n rows and one picture with 2n
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columns. Suppose by the contrary that p ∈ L and that some strictly increasing se-
quence of extensions has a subsequence {pi}i≥0 where pi = (n+a+ih,m+b+ik),
for some a, b ≥ 0, h, k ≥ 1. Since p0 = (n + a,m + b) ∈ L, we have that
m + b = n + a = 2x; and since p1 = (n + a + h,m + b + k) ∈ L, then
m+ b+ k = n+ a+ k = 2x+y with y > 0 and thus k = 2x+y − 2x. Consider now
p2 = (n+ a+ 2h,m+ b+ 2k); we have that m+ b+ 2k = 2x + 2(2x+y − 2x) =
2x(1 + 2y+1 − 2) = 2x(2y+1 − 1). Therefore m+ b+ 2k is the product of a power
of 2 times an odd number and cannot be a power of 2, against p2 ∈ L.

We now show that the family of CRD-regular languages lies between the
class L(3DFA)(1) and REC(1). On the other hand, it is not comparable with
L(4NFA)(1).

Proposition 4. L(3DFA)(1) ⊂ L(CRD) ⊂ REC(1), with strict inclusions.

Proof. Let L ∈ L(3DFA)(1). Following [13], we have that L is a finite union of
languages R whose elements are (a0 + a1n, h(b0 + b1n) + b2n + b3k + b4) with
a0, a1, b0, b1, b2, b3, b4 positive integers and n, h, k positive integer variables. Any
such language R is in L(CRD). Indeed let En,n denote the language of squares
(Example 2). The language {(a0+a1n, b0+b1n) | a0, a1, b0, b1, n ∈ N} is denoted
by Ea0,a1,b0,b1 = ((a0, b0) �\ ((En,n)a1

�
)b1

�
). Therefore a CRD-RE for R is E =

(Ea0,a1,b0,b1)
∗ �

�((a0, 1)∗
�

�E0,a1,0,b2) �((1, b3)∗
�
)∗

�
) �((1, b4)∗

�
). Moreover

the inclusion L(3DFA)(1) ⊂ L(CRD) is strict: the language L = {(n, k1(n+1)+
k2(n+2)+k3(n+3)} in Example 4 is in L(CRD), but L �∈ L(3DFA)(1) (cf. [13]).
Further we have L(CRD) ⊆ REC(1) because REC(1) is closed under operations
in CRD (cf. [5] and Proposition 1). An example of languages in REC(1)\L(CRD)
is {(2n, 2n) | n ≥ 1 } (see Example 6).

Proposition 5. There exist L ∈ L(CRD) \ L(4NFA)(1) and L′ ∈ L(4NFA)(1) \
L(CRD).

Proof. Let L = {(hn, hkn + n) | n, h, k ≥ 1 }; L ∈ L(CRD) (Example 5),
but it can be shown that L �∈ L(4NFA)(1). Consider now the language L′ =
{(2n, 2n) | n ≥ 1 }; L′ �∈ L(CRD) (Example 6), but L′ ∈ L(4DFA)(1) ([12]).

3.3 A Collection of Examples

In this section, we give a collection of examples of two-dimensional languages
and classify them with respect to their machine-type and their regular
expression-type. Languages are given by their representative element, where
n,m, h, k ≥ 1 are integer variables and c ≥ 1 is an integer constant. Moreover
f1(n) = a1 + · · · + an, where a1, · · · , an are all chosen in a finite subset of N ,
and f2(n) = k1(n+ 1) + k2(n+ 2) + k3(n+ 3), where k1, k2, k3 ≥ 1 are integer
variables.
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Element 2DFA 2NFA 3DFA 3NFA 4DFA 4NFA D-RE CRD-RE REC

(n, n) Y Y Y Y Y Y Y Y Y
(2, 2n) Y Y Y Y Y Y Y Y Y
(2n, 2n) Y Y Y Y Y Y Y Y Y
(2n, 2m) Y Y Y Y Y Y Y Y Y
(n, cn) Y Y Y Y Y Y Y Y Y

(n, f1(n)) N Y Y Y Y Y Y Y Y
(kn, n) N N Y Y Y Y N Y Y

(n, f2(n)) N N N Y Y Y N Y Y
(n, kn) N N N N Y Y N Y Y
(2n, 2n) N N N N Y Y N N Y

(hn, hkn+ n) N N N N N N N Y Y
(n, n2) N N N N N N N N Y
(n2, n) N N N N N N N N Y
(n2, n2) N N N N N N N N Y
(n, 2n) N N N N N N N N Y
(n, n!) N N N N N N N N N

3.4 Advanced Star Operations

Using three types of concatenation operation (row, column and diagonal) and
the three corresponding stars we get regular expressions describing a quite large
family of two-dimensional languages. Nevertheless, all those operations together
seem not enough to describe the whole family REC(1) because REC contains
very “complex” languages even in the case of a one-letter (see for example [4]).

The peculiarity of the “classical” star operation (along which such column,
row or diagonal stars are defined) is that it corresponds to an iterative process
that at each step adds (concatenates) always the same set. We can say that it
corresponds to the idea of an iteration for some recursiveH defined likeH(1) = S
and H(n+ 1) = H(n) · S where S is a given set. This seems to cause the main
difficulty in defining expressions for languages of pictures (n, n2) or (n2, n2) or
(2n, 2n), or (f(n), f(n)) with f(n) polynomial or exponential function, for n > 0.

In this section we propose a new type of iteration operation, an advanced
star, that results much more powerful because somehow “implements” the idea
of iteration for a recursive H defined like H(1) = S and H(n+1) = H(n) ·K(n)
where S is a given set and K(n) is another recursive function. That is at each
step of the iteration we add something that depends on that step.

Definition 7. Let L,Lr, Ld be two-dimensional languages. The star of L with
respect to (Lr, Ld) is defined as: L(Lr,Ld)∗ =

⋃
i L

(Lr,Ld)i where L(Lr,Ld)0 = L

and L(Lr,Ld)i+1 =
{
p′ =

p pr

pd q
| p ∈ L(Lr,Ld)i , pr ∈ Lr, pd ∈ Ld, q ∈ Σ∗∗

}
.

Remark that the operation we defined cannot be simulated by a sequence of
�and �operations because to get p′ we first concatenate p �pr and p �pd, then
we overlay them and then we fill the hole with a picture q ∈ Σ∗∗. Notice that this
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advanced star is based on a reverse principle with respect to the diagonal star:
we “decide” what to concatenate to the right and down to the given picture and
then fill the hole in the bottom-right corner. Moreover, observe that, at (i+1)st
step of the iteration, we are forced to select pictures pr ∈ Lr and pd ∈ Ld that
have the same number of rows and the same number of columns, respectively,
of pictures generated at the ith step. Therefore, we exploit the fact that column
and row concatenations are partial operations to synchronize the steps of the
iterations with the pictures we concatenate.

As a simple example, we can define the language L′ = {(n, n2) |n > 0} as
L(Lr,Ld)∗ where L = {(1, 1)}, Lr = {(n, 2n+1) |n > 0} and Ld = {(1, n) |n > 0}.
Moreover we can define the language L′′ = {(n2, n2) |n > 0} asM (Mr,Md)∗ where
M = {(1, 1)}, Mr = {(n2, 2n+ 1) |n > 0} and Md = {(2n+ 1, n2) |n > 0}.

We state the following proposition without proof for like of space. It can be
proved using techniques similar to main proof in [4], despite the details are more
involved.

Proposition 6. If L,Lr, Ld are languages in REC, then L(Lr,Ld)∗ is in REC.

Remark that it seems not possible to define the language of pictures of size
(n, 2n) using such advanced star. In fact the definition should involve an iteration

like: L(Ld)i+1 =
{
p′ =

p p
pd q

| p ∈ L(Ld)i , pd ∈ Ld, q ∈ Σ∗∗
}
. That is, we would

need to use as Lr the language itself.

4 Concluding Remarks and Further Research

We have proposed new operations so that a quite wide class of two-dimensional
languages inside REC could be described in terms of regular expressions. Never-
theless we still have not gain a complete description of class REC, even for the
case of one-letter. Further steps are surely to define and refine other “advanced”
star operations in the aim of proving a two-dimensional Kleene’s Theorem.
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Abstract. We investigate the generative power of cooperating distribu-
ted grammar systems (CDGSs), if the cooperation protocol is based on
the level of competence on the underlying sentential form. A component
is said to be =k-competent (≤k-, ≥k-competent, resp.) on a sentential
form if it is able to rewrite exactly k (at most k, at least k, resp.) differ-
ent nonterminals appearing in that string. In most cases CDGSs working
according to the above described cooperation strategy turn out to give
new characterizations of the language families based on random context
conditions, namely random context (context-free) languages and the bio-
logically motivated family of languages generated by ET0L systems with
random context. Thus, the results presented in this paper can shed new
light on some longstanding open problems in the theory of regulated
rewriting.

1 Introduction

A grammar system is a set of grammars that under a specific cooperation proto-
col generates one language. The idea to consider—contrary to the “one grammar
generating one language” paradigm of classical formal language theory—a set
of cooperating grammars generating one language first appeared in [9]. An in-
tensive exploration of the potential of grammar systems was not undertaken
until [3] established a link between cooperating distributed grammar systems
(CDGSs) and blackboard systems as known from artificial intelligence. A black-
board system consists of several autonomous agents, a blackboard, and a control
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mechanism. The control mechanism dictates some rules which the agents must
respect during their joint effort to solve a problem stated on the blackboard.
The only way in which the agents may communicate is via the blackboard,
which represents the current state of the problem solving. If the problem solving
is successful, the solution appears on the blackboard. CDGSs form a language-
theoretic framework for modelling blackboard systems. Agents are represented
by grammars, the blackboard is represented by the sentential form, control is
regulated by a cooperation protocol of the grammars, and the solution is rep-
resented by a terminal word. By now, grammar systems form a well-established
and well-recognized area within the theory of formal languages. The interested
reader is referred to [6] for more information.

In this paper we examine some variants of cooperation protocols for CDGSs
based on the level of competence that a component has on a sentential form.
Competence-based cooperation protocols have already been studied in the liter-
ature, e.g., [1, 3–5, 9] We consider cooperation protocols that allow a component
to start rewriting when such a competence condition is satisfied, and that re-
quire it to do so as long as the grammar satisfies this condition. Intuitively, a
component is =k-competent (≤k-competent, ≥k-competent, resp.) on a senten-
tial form if it is able to rewrite exactly k (at most k, at least k, resp.) different
nonterminals appearing in the sentential form. In the sequel we will call these
cooperation protocols the =k-comp.-mode (≤k-comp.-mode, ≥k-comp.-mode,
resp.) of derivation. Hence the more different nonterminals of a sentential form a
component is able to rewrite, the higher its (level of) competence on that string.
By restricting the rewriting of the sentential form to components having a cer-
tain (level of) competence, we provide a formal interpretation of the requirement
that agents must be competent enough before being able to participate in the
problem solving taking place on the blackboard.

We demonstrate that these competence-based cooperation protocols are very
powerful and closely related to rewriting mechanisms based on random context
conditions. To be more precise, it is shown that CDGSs working in the =1-comp.-
or ≤1-comp.-mode of derivation are at least as powerful as the family of lan-
guages generated by forbidding random context grammars, while CDGSs work-
ing according to the ≥1-comp.-mode of derivation characterize the family of
ET0L languages. A slight increase in the level of competence gives a significant
increase in generative power, namely already CDGSs working in the =2-comp.-
or ≤2-comp.-mode of derivation characterize the family of random context lan-
guages or, equivalently, that of the recursively enumerable languages, while the
≥2-comp.-mode leads to the biologically motivated family of languages generated
by ET0L systems with random context [11]. This is yet another characteriza-
tion of the family of random context ET0L languages, which recently appeared
several times in relation with CDGSs and non-standard derivation modes—see,
e.g., [2]. The family of random context ET0L languages is of interest because it
coincides with the family of recurrent programmed context-free languages and
forms an intermediate class between the families of context-free random con-
text languages and programmed context-free languages generated by grammars
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without appearance checking [8]. In fact we show that rather simple component
grammars suffice to simulate random context grammars or ET0L systems with
random context, thus showing that it is indeed the cooperation protocol that is
very powerful. So we hope that one can gain a deeper insight into the nature of
(recurrent) programmed versus random context grammars without appearance
checking such that new light is shed on some longstanding open questions.

2 Definitions

We assume the reader to be familiar with the basic notions of formal languages
as, e.g., contained in [7]. In general, we have the following conventions. Set
difference is denoted by \, set inclusion by ⊆, and strict set inclusion by ⊂. The
cardinality of a set M is denoted by |M |. The empty word is denoted by λ.

A random context grammar is a quadruple G = (N,T, P, S), where N , T ,
and S ∈ N are the set of nonterminals, the set of terminals, and the start
symbol, respectively. Moreover, P is a finite set of random context rules, i.e.,
triples of the form (α → β,Q,R), where α → β is a context-free produc-
tion and Q,R ⊆ N are its permitting and forbidding context, respectively. For
x, y ∈ (N ∪ T )∗ we write x ⇒ y if and only if x = x1αx2, y = x1βx2, all
symbols of Q appear in x1x2, and no symbol of R appears in x1x2. If either Q
and/or R is empty, then the corresponding context check is omitted. The lan-
guage generated by G is defined as L(G) = {w ∈ T ∗ | S ∗⇒ w }, where ∗⇒ is the
reflexive transitive closure of ⇒. The family of languages generated by random
context grammars is denoted by L(RC,CF). It is known—see, e.g., [7]—that
L(RC,CF) = L(RE), where L(RE) denotes the class of recursively enumerable
languages.

Random context grammars where all permitting contexts are empty are
called forbidding random context grammars. In this case we are led to the family
L(fRC,CF) of forbidding random context languages. It is known—see, e.g., [7]—
that L(ET0L) ⊂ L(fRC,CF) ⊆ L(RC,CF), where L(ET0L) denotes the family
of languages generated by ET0L systems.

A random context ET0L system is a sixtuple G = (Σ,H, ω,Δ, oc,noc), where
the four tuple (Σ,H, ω,Δ) is an ordinary ET0L system, with Σ as its total
alphabet, Δ ⊆ Σ as its terminal alphabet, H as its set of tables (finite sub-
stitutions from Σ into Σ∗), ω ∈ Σ+ as its axiom, and oc, noc as functions
from H to the subsets of Σ. For two strings x, y ∈ Σ∗, the relation x ⇒ y
holds if and only if there is an h ∈ H, such that all letters in oc(h) occur
in x, no letter of noc(h) occurs in x, and y ∈ h(x). Let ∗⇒ denote the reflex-
ive and transitive closure of ⇒. The language generated by G is defined as
L(G) = {w ∈ Δ∗ | ω ∗⇒ w }. The family of languages generated by random
context ET0L systems is denoted by L(RC,ET0L). It is known—see, e.g., [7]—
that L(ET0L) ⊂ L(RC,ET0L) ⊆ L(RE), but it is an open problem whether the
latter inclusion is strict.
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3 Competence in CD Grammar Systems

A cooperating distributed grammar system (CDGS) of degree n, with n ≥ 1, is
an (n + 3)-tuple G = (N,T, α, P1, . . . , Pn), in which N and T are its disjoint
alphabets of nonterminals and terminals, respectively, α ∈ (N ∪T )∗ is its axiom,
and P1, . . . , Pn are finite sets of context-free productions over N × (N ∪ T )∗

that are called its components. The given definition of CDGSs differs from the
usual one since arbitrary words from (N ∪ T )∗ may serve as its axioms. For
x, y ∈ (N ∪T )∗ and 1 ≤ i ≤ n, we define a single rewriting step as x ⇒i y if and
only if x = x1Ax2 and y = x1zx2, for some A → z ∈ Pi. The subscript i thus
refers to the component being used.

Next we recall from [4] the notion of competence that components of a CDGS
have on a particular sentential form. First we define the domain of a component
as dom(Pi) = {A ∈ N | A → z ∈ Pi }. Consequently, component Pi, with 1 ≤
i ≤ n, is said to be k-competent on a sentential form x in (N ∪T )∗ if and only if
|alphN (x)∩dom(Pi)| = k, where alphN (x) = {A ∈ N | x ∈ (N∪T )∗A(N∪T )∗ },
i.e., it denotes the set of all nonterminals occurring in x. We abbreviate the (level
of) competence of component Pi on x by clevi(x).

Based on the (level of) competence that the components have on a sentential
form, we define the following cooperation protocols for CDGSs:

1. x ⇒≤k-comp.
i y if and only if there is a derivation x = x0 ⇒i x1 ⇒i · · · ⇒i

xm−1 ⇒i xm = y and it satisfies
(a) clevi(xj) ≤ k for 0 ≤ j < m and (i) clevi(xm) = 0 or (ii) y ∈ T ∗, or
(b) clevi(xj) ≤ k for 0 ≤ j < m and clevi(xm) > k,

2. x ⇒=k-comp.
i y if and only if there is a derivation x = x0 ⇒i x1 ⇒i · · · ⇒i

xm−1 ⇒i xm = y and it satisfies
(a) clevi(xj) = k for 0 ≤ j < m and clevi(xm) �= k, or
(b) clevi(x0) = k, clevi(xj) ≤ k for 1 ≤ j ≤ m, and y ∈ T ∗.

3. x ⇒≥k-comp.
i y if and only if there is a derivation x = x0 ⇒i x1 ⇒i · · · ⇒i

xm−1 ⇒i xm = y and it satisfies
(a) clevi(xj) ≥ k for 0 ≤ j < m and clevi(xm) < k, or
(b) clevi(x0) ≥ k and y ∈ T ∗.

Let D = {≤k-comp.,=k-comp.,≥k-comp. | k ≥ 1 } and let ⇒f denote ⇒f
i

for some i, with 1 ≤ i ≤ n, and f ∈ D. The reflexive transitive closure of ⇒f is
denoted by ∗⇒f . The language generated by G in the f -mode of derivation, with
f ∈ D, is Lf (G) = {w ∈ T ∗ | α ∗⇒fw }. The family of languages generated by
CDGSs working in the f -mode of derivation is denoted by L(CD,CF, f).

Example 1. Let G = (N,T, α, P1, . . . , P8) be a CDGS with set of nonterminals
N = {A,A′, B,B′, C,D}, terminals T = {a, b, c}, axiom AB, and components

P1 ={A → aA′b, B′ → B′, C → C},
P2 ={A → A,B → B′c, C → C},
P3 ={A′ → A,B → B,C → C},
P4 ={A′ → A′, B′ → B,C → C},

P5 ={A′ → C,B → B},
P6 ={A → A,A′ → A′, B′ → D},
P7 ={B′ → B′, C → λ}, and
P8 ={D → λ}.
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When working in the ≤1-comp.-mode or =1-comp.-mode of derivation, G
generates the language L(G) = { anbncn | n ≥ 1}. This can be seen as follows.

Starting from the axiom, the components P1, P3, P5, and P6 are all 1-
competent. However, except for P1, their application does not alter the ax-
iom and hence these components remain 1-competent forever. In those cases
the derivation thus enters a loop. From the axiom, the only two-step deriva-
tion that does not loop is thus AB ⇒=1-comp.

1 aA′bB ⇒=1-comp.
2 aA′bB′c.

Consequently, a choice must be made. First we can apply P5 to obtain
the derivation aA′bB′c ⇒=1-comp.

5 aCbB′c ⇒=1-comp.
6 aCbDc, after which

the derivation can be finished by aCbDc ⇒=1-comp.
7 abDc ⇒=1-comp.

8 abc
or instead by applying P8 before P7. Secondly, we can apply P3 to ob-
tain aA′bB′c ⇒=1-comp.

3 aAbB′c ⇒=1-comp.
4 aAbBc, after which this sequence

of applications of P1, P2, P3, and P4 can be repeated n − 1 times, for
some n ≥ 1, to obtain anAbnBcn. Subsequently, the derivation can be fin-
ished by anAbnBcn ⇒=1-comp.

1 anA′bnBcn ⇒=1-comp.
2 anA′bnB′cn ⇒=1-comp.

5
anCbnB′cn ⇒=1-comp.

6 anCbnDcn ⇒=1-comp.
7 anbnDcn ⇒=1-comp.

8 anbncn or, in-
stead, by interchanging the application of P7 and P8. Clearly, indeed the language
Lf (G) = { anbncn | n ≥ 1 }, with f ∈ {≤1-comp.,=1-comp.}, is generated.

4 The Power of ≤ k- and = k-Competence in CDGSs

It turns out that CDGSs working in the ≤1-comp.-mode or in the =1-comp.-
mode are at least as powerful as forbidding random context grammars, but it
remains an open problem to establish their exact computational power. Due to
the lack of space the proof of the following theorem is left to the reader.

Theorem 1. For f ∈ {≤1,=1}, L(fRC,CF) ⊆ L(CD,CF, f-comp.). ��
Next we consider CDGSs working in the =k-comp.-mode, with k ≥ 2. It

turns out that already for k = 2, such CDGSs characterize the class of random
context languages (and thus the class of recursively enumerable languages).

Theorem 2. For f ∈ {≤k,=k} and k ≥ 2, L(CD,CF, f-comp.) = L(RC,CF).

Proof. The inclusions from left to right are rather obvious, since CDGSs working
in any of the above competence modes can be simulated by a random context
grammar. As a formal proof would be quite tedious, we leave the technical details
to the reader. We now prove the inclusion from right to left for the =k case,
for k ≥ 2. The ≤k case can be proved in a similar way, but is left to the reader.

We first prove the case that k = 2, and then sketch the necessary modifi-
cations for the cases with k > 2. Let G = (N,T, P, S) be a random context
grammar in normal form1 with rules p : (A → z,Q,R) ∈ P , where Q is the per-

1 A (forbidding) random context grammar G = (N, T, P, S) is in normal form if for
every (forbidding) random context rule (A → z, Q, R) ∈ P , we have A /∈ Q ∪ R. It
is easy to show that for every (forbidding) random context grammar G, there exists
a (forbidding) random context grammar G′ in normal form that generates the same
language, i.e., L(G′) = L(G).
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mitting context and R is the forbidding context of p. Note that the fact that G is
in normal form implies that A �∈ Q∪R. Obviously, we can assume that Q∩R = ∅.

To simulate G we construct a CDGS G′ with nonterminals N ′ = M ∪ N ∪
{F,X, Y, Z}, where M = { [p], [p,B], [p,¬C] | p : (A → z,Q,R) ∈ P, B ∈
Q, C ∈ R }, such that the unions above are disjoint, the set of terminals T is
disjoint from N ′, the axiom is SZ , and the components are as defined below.

For each random context rule p : (A → z,Q,R), we construct the components
{Pp,start} ∪ {P check

p,B | B ∈ Q } ∪ {P check
p,¬C | C ∈ R } ∪ {Pp,apply} described below.

At any moment, we can see from the subscripts of these components which step
of the simulation is performed: After we start simulating the application of the
rule p ∈ P , we check the (non-)presence of the permitting (forbidding) symbols
from the permitting context, Q (forbidding context, R) of this rule, or we apply
the context-free production A → z of this rule. Next to these components we
introduce below two more components, PX and PYZ . For now we assume that
both Q and R are nonempty. The other cases will later be dealt with separately.

The idea of the simulation is the following. Before the simulation of the ap-
plication of a random context rule, a marker from the set M is introduced in
the sentential form. With the aid of this marker, we check the presence of the
permitting and the non-presence of the forbidding symbols. First we check the
presence of the permitting symbols starting with the first such symbol. The only
component that is able to rewrite the leading marker is 1-competent whenever
this permitting symbol is not present in the sentential form, and 2-competent
whenever this symbol is present. The moment in which this component is ap-
plied it introduces the symbol X and by doing so becomes ≥3-competent. This
procedure is repeated for all the remaining permitting symbols. Secondly, we
check that no forbidding symbol is present. Again, we start with the first such
forbidding symbol. This time the only component that is able to rewrite the
leading marker is 3-competent whenever this forbidding symbol is present, in
which case no successful derivation exists.

We now present more details of the construction. The simulation starts with
the application of the component

Pp,start = {A → [p]XY } ∪ {X → F, Y → F, Z → Z} ∪ {L → F | L ∈ M },
for some rule p : (A → z,Q,R) ∈ P . This component introduces the leading
marker [p] indicating that we start to simulate p, which thus requires the presence
of A. The moment in which one occurrence of A is rewritten, this component
moreover becomes ≥3-competent, which thus guarantees that only one such an
occurrence is rewritten. Since during the whole simulation the leading marker
as well as the symbols Y and Z are present in the sentential form, no simulation
of a rule different from p can be started once the simulation of p was started.

Before testing the presence of the permitting context Q of p, we have to
remove X (or the derivation eventually is blocked) with the component

PX = {X → λ, Z → Z}.
This component is 2-competent whenever X is present in the sentential form,

and becomes 1-competent after it has erased X.
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Let the permitting context of p be Q = {B1, . . . , B�p
}. The simulation con-

tinues by applying, for all 2 ≤ j ≤ �p, the components

P check
p,B1

= {[p] → [p,B1]} ∪ {B1 → B1X} ∪ {X → F} ∪ {L → F | L ∈ M } and

P check
p,Bj

= {[p,Bj−1] → [p,Bj ]} ∪ {Bj → BjX} ∪ {X → F} ∪ {L → F | L ∈ M },
alternated with the component PX erasing the X’s inbetween.

The sequence of components thus applied is P check
p,B1

,PX , . . . , P check
p,B�p

, PX . Each

such a component P check
p,Bj

, 1 ≤ j ≤ |Q|, is 2-competent once it is applied due to
the presence of the symbol Bj , which is in accordance with the fact that rule p
can only be applied when this symbol from its permitting context is present.
If this symbol is not present, then such a component is 1-competent due to the
presence of the leading marker [p,Bj−1] and thus not applicable. Note, moreover,
that if the X was not removed and the symbol Bj is not present, then such a
component would be 2-competent. In that case it could either replace the X by
an F or replace the leading marker [p,Bj−1] by [p,Bj ], remain 2-competent, and
replace either the X or [p,Bj ] by an F . Also all these cases are in accordance
with the permitting context of p.

Now the moment in which the production Bj → BjX is applied, this compo-
nent becomes ≥3-competent, and it has successfully tested the presence of Bj .
Note that no derivation can be successful in case the leading marker [p,Bj−1]
is not replaced by the application of [p,Bj−1] → [p,Bj ] before the application
of Bj → BjX. We also note that in case there were more occurrences of Bj in
the sentential form, then still only one occurrence is rewritten.

When we arrive at this point, we have thus successfully tested the presence
of all the symbols from the permitting context of rule p. Hence we are ready
to test the non-presence of all the symbols from its forbidding context. Let
p : (A → z,Q,R), and let R = {C1, . . . , Cmp

}. The simulation continues with
the application of the component

P check
p,¬C1

= {[p,B�p
] → [p,¬C1]} ∪ {C1 → F}

∪ {X → F, Z → Z} ∪ {L → F | L ∈ M \ {[p,¬C1]} }.

Given the current sentential form, this component is 2-competent or 3-
competent, depending on the presence of C1 in the sentential form. If C1 is
present, then no successful derivation exists. This is in accordance with the fact
that in that case the rule p cannot be applied due to the fact that the symbol C1
from its forbidding context is present in the sentential form.

Subsequently we apply, for all 2 ≤ k ≤ mp, the components

P check
p,¬Ck

= {[p,¬Ck−1] → [p,¬Ck]} ∪ {Ck → F}
∪ {X → F, Z → Z} ∪ {L → F | L ∈ M \ {[p,¬Ck]} }.

The sequence of components thus applied is P check
p,¬C2

, . . . , P check
p,¬Cmp

. If along the
way a symbol Ck, for 2 ≤ k ≤ |R|, from the forbidding context of the rule p is
present, then no successful derivation exists.
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When we arrive at this point without having introduced an F , we have thus
successfully tested also the non-presence of all the symbols from the forbidding
context of rule p. Hence we are ready to actually simulate the application of the
context-free production A → z of the rule p. Obviously, we need to do so only
once, but this is guaranteed by the fact that there is only one occurrence of the
leading marker [p,¬Cmp

]. To this aim, we apply the 2-competent component

Pp,apply = {[p,¬Cmp
] → z} ∪ {Z → Z} ∪ {L → F | L ∈ M },

which becomes 1-competent as soon as [p, Cmp
] → z is applied, in which case we

have successfully simulated the application of the rule p.
All that remains is to bring the sentential form back to a form from which

the simulation of another rule from G can be started or to finish the derivation.
This is done by removing Y . To this aim we apply the 2-competent component

PYZ = {Y → λ, Z → λ}.

At this point it is important to note that eventually it is this component PYZ
that can finish the derivation by removing not only Y , but also Z. However, it
can be seen that no successful derivation exists if Z is removed rather than Y .

If component PYZ is applied earlier on in the derivation, then such an appli-
cation would remove either Y or Z, but not both. For the same reason as above,
no successful derivation exists if Z is removed. Now assume that Y is removed.
Since the only use of Y is to guarantee that component PYZ is 2-competent
when we want to finish the derivation by removing both Y and Z, an earlier
application of component PYZ is harmless as long as it occurs before the final
application of a rule from G. If, on the contrary, Y is removed after the final ap-
plication of a rule from G, then component PYZ can never become 2-competent,
thus Z can never be removed, and no successful derivation exists.

Let us now describe how to adapt the construction for the cases dealing with
a random context rule p : (A → z,Q,R) in which Q and/or R is empty. We
distinguish three cases and describe only the components that must be changed:

(1) In case R �= Q = ∅, we construct no components of the form P check
p,Bj

and
replace production [p,B�p

] → [p,¬C1] by [p] → [p,¬C1] in component P check
p,¬C1

.
(2) In case Q �= R = ∅, we remove all components of the form P check

p,¬Ck
and replace

production [p,¬Cmp
] → z by [p,B�p

] → z in component Pp,apply .
(3) In case Q = R = ∅, we construct no components of the form P check

p,Bj
or P check

p,¬Ck

and replace production [p,¬Cmp
] → z by [p] → z in component Pp,apply .

The CDGS G′ constructed above correctly simulates the random context
grammar G and generates the language L(G), when working in the =2-comp.-
mode. This proves the statement of this theorem for the case k = 2.

Let us now briefly discuss the proof of the more general case. Let k > 2. We
now sketch how to adapt G′ such that the resulting CDGS G′′ correctly simulates
the random context grammar G and generates the language L(G), when working
in the =k-comp.-mode. We do not specify all the resulting modifications, but
rather take one such component and show how it is adapted for inclusion in G′′.
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Recall that the component Pp,start becomes ≥3-competent (and can thus no
longer be applied) the moment in which production A → [p]XY is applied. The
reason for this is as follows. The application of this production introduces each of
the symbols [p], X, and Y to the sentential form. Since the component moreover
contains a production for each of these symbols, this immediately makes the
component ≥3-competent. To make the simulation work in the =k-comp. mode
for k ≥ 3, we replace the component Pp,start in G′ by the component P ′′p,start =
{A → [p]XY Z1 · · ·Zk−2}∪{X → F, Y → F, Z → Z}∪{Z1 → F, . . . , Zk−2 →
F}∪{L → F | L ∈ M }, where Z1, . . . , Zk−2 are new symbols different from N ′∪
T . We leave the other modifications to the reader. �

5 The Power of ≥ k-Competence in CDGSs

We start our investigations with CDGSs working in the ≥1-comp.-mode. Since
the ≥1-comp.-mode by definition equals the t-mode of derivation, as introduced
in [3], we immediately obtain the following result, which is due to [3].

Theorem 3. L(CD,CF,≥1-comp.) = L(ET0L). ��

Next we consider CDGSs working in the ≥k-comp.-mode, with k ≥ 2. It
turns out that already for k = 2, such CDGSs characterize the class of random
context ET0L languages.

Theorem 4. For k ≥ 2, L(CD,CF,≥k-comp.) = L(RC,ET0L).

Proof. Here we prove the inclusion from right to left. To prove the reverse
inclusion, for any CGDS working in the ≥k-comp.-mode of derivation a recurrent
programmed grammar can be constructed that simulates it. The quite tedious
details are left to the reader.

The construction we use is strongly based on the one used in the proof of
Theorem 2, except that the test for forbidding symbols is now incorporated in the
component applying the simulated productions. Again, we first prove the case
that k = 2, and then sketch the necessary modifications for the cases with k > 2.
Let G = (Σ,H, ω,Δ, oc,noc) be a random context ET0L system in normal
form2. Without loss of generality we can assume oc(h)∩noc(h) = ∅ for every table
h ∈ H. To simulate G we construct a CDGS G′ with nonterminals N ′ = M∪N∪
{B′ | B ∈ oc(h), h ∈ H }∪{F,X, Y }, where M = { [h,B]1, [h,B]2, [h,B]3 | h ∈

2 A random context ET0L system G = (Σ, H, ω, Δ, oc,noc) is in normal form if every
table h ∈ H is of the form { B → B | B ∈ Σ \ {A} } ∪ hA, where hA = { A →
z, A → A | A ∈ Σ, z ∈ Σ∗, z �= A } or hA = { A → z | A ∈ Σ, z ∈ Σ∗, z �= A },
and A /∈ oc(h) ∪ noc(h). If table h is of the form { B → B | B ∈ Σ \ {A} } ∪ hA for
some A ∈ Σ, then A is called the active symbol of h and A → z in hA the active
production of h. By standard constructions one can show that for every random
context ET0L system G, there exists a random context ET0L system G′ in normal
form that generates the same language, i.e., L(G′) = L(G).
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H, B ∈ oc(h) }, such that the unions are disjoint, terminals T disjoint from N ′,
axiom XYS , and the components defined below.

For each table h ∈ H, with oc(h) = {B1, . . . , B�h
}, we construct the compo-

nents {Ph,Bj ,1, Ph,Bj ,2, Ph,Bj ,3 | 1 ≤ j ≤ �h } ∪ {Ph,apply} described below. We
also introduce one more component, Pfinish . For now we assume that both oc(h)
and noc(h) are nonempty. The other cases will later be dealt with separately.

The idea of the simulation is similar to that of the proof of Theorem 2. We
now describe more details of the construction. Let h ∈ H be a table of G and let
oc(h) = {B1, . . . , B�h

}. The simulation of h starts by applying the component

Ph,B1,1 = {A → [h,B1]1 | A is the active symbol of h }
∪ {[h,B1]1 → [h,B1]1, B1 → B′1} ∪ {L → F | L ∈ M }.

This component can be applied if and only if both A, the active symbol of h,
and B1 ∈ oc(h) are present, after which it remains ≥2-competent until all occur-
rences of B1 have been primed. Moreover, we shall shortly see that no successful
derivation exists unless all occurrences of A have been replaced by [h,B1]1.

Consequently, the component

Ph,B1,2 = {[h,B1]1 → [h,B1]2} ∪ {B′1 → B1, B1 → B1} ∪ {A → F |
A is the active symbol of h } ∪ {L → F | L ∈ M \ {[h,B1]2} }

remains ≥2-competent until all occurrences of [Ai, pi, 1]1 have been replaced
by [h,B1]2. Moreover, we shall shortly see that no successful derivation exists
unless at least one occurrence of B′1 is unprimed. However, due to the presence
of B1 → B1 this means that this component remains ≥2-competent until all
occurrences of B′1 are unprimed. Since this is the only component capable of
unpriming B′1, it is this component that guarantees that no successful derivation
exists if component Ph,B1,1 has not replaced all occurrences of A by [h,B1]1.

The component which guarantees that no successful derivation exists if com-
ponent Ph,B1,2 has not unprimed all occurrences of B′1 is

Ph,B1,3 = {[h,B1]2 → [h,B1]3} ∪ {B1 → B1} ∪ {L → F | L ∈ M \ {[h,B1]3} }.
This component is ≥2-competent if and only if B1 is present. Since this is

the only component replacing [h,B1]2 by [h,B1]3, no successful derivation exists
if this component is not applied.

Now that we have successfully tested the presence of the first permitting
symbol, the simulation continues by doing the same for the remaining permitting
symbols, i.e., by applying, for all 2 ≤ j ≤ �h, the components

Ph,Bj ,1 = {[h,Bj−1]3 → [h,Bj ]1, [h,Bj ]1 → [h,Bj ]1} ∪ {Bj → B′j}
∪ {L → F | L ∈ M },

Ph,Bj ,2 = {[h,Bj ]1 → [h,Bj ]2} ∪ {B′j → Bj , Bj → Bj} ∪ {A → F |
A is the active symbol of h } ∪ {L → F | L ∈ M \ {[h,Bj ]2} }, and

Ph,Bj ,3 = {[h,Bj ]2 → [h,Bj ]3} ∪ {Bj → Bj} ∪ {L → F | L ∈ M \ {[h,Bj ]3} }.
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Hence, the sequence of components applied is Ph,B2,1, Ph,B2,2, Ph,B2,3, . . . ,
Ph,B�h

,1, Ph,B�h
,2, Ph,B�h

,3. If along the way a permitting symbol Bj , for 2 ≤
j ≤ �h, is not present, then the derivation is blocked due to the fact that in that
case component Ph,Bj ,1 is 1-competent and thus cannot be applied.

When we arrive at this point, we have thus successfully tested the presence
of all the symbols from the permitting context of table h. Hence we are ready
to test the non-presence of all the symbols from its forbidding context and to
subsequently simulate the application of its active productionA → z by replacing
some of the occurrences of [h,B�h

]3 by z (and the remaining occurrences by A).
The simulation continues with the application of the component

Ph,apply = {[h,B�h
]3 → z, [h,B�h

]3 → A |A → z is the active production ofh}
∪ {X → X} ∪ {C → F | C ∈ noc(h) } ∪ {L → F | L ∈ M }.

In this component we use the extra marker X to guarantee its ≥2-competence
whenever all the permitting symbols are present. In case any forbidding symbol
C ∈ noc(h) is present, then a failure symbol F must be introduced or else
Ph,apply remains ≥2-competent. This is in accordance with the fact that in that
case no active production from table h can be applied due to the fact that a
symbol from its forbidding context is present in the sentential form. Hence we
have successfully applied table h ∈ H and the sentential form is in a form from
which the simulation of another table from G can be started.

It remains to erase the symbols X and Y from the sentential form as soon as
a successful derivation of a terminal word in G has been simulated, i.e., when the
sentential form is XY w, for some w ∈ T ∗. This is achieved by the component

Pfinish = {X → λ, Y → λ}.

Note that both X and Y are erased by this component if and only if it is
applied to a sentential form XY w, for some w ∈ T ∗. In all other cases, only
one of these symbols is erased because this component becomes 1-competent the
moment this happens. Since neither of these symbols can be rewritten by any
component other than Pfinish , no successful derivation exists if this component
is applied to a sentential form that is not of the form XY w with w ∈ T ∗.

Similar to the way we did this in the proof of Theorem 2, our construction
can easily be adapted for tables h ∈ H, where oc(h) and/or noc(h) is empty.

This completes the description of the CDGSG′. It is left to the reader to verify
that whenever components are applied in an order different from the one pre-
scribed above by the leading marker, then no successful derivation exists. This is
achieved by the inclusion of productions in components which guarantee—where
necessary—that a failure symbol F (which can never be rewritten) is introduced,
or that the derivation is blocked because no more component can be applied.
Both of these cases clearly block the derivation. The CDGS G′ constructed above
correctly simulates the random context ET0L system G and generates the lan-
guage L(G), when working in the ≥2-comp.-mode. This proves the statement of
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this theorem for the case k = 2. The proof of the more general case is rather
straightforward and it is thus left to the reader. �

6 Conclusion

In this paper we have introduced the ≤k-comp.-, =k-comp.-, and ≥k-comp.-
mode of derivation, with k ≥ 1, as cooperation protocols for CDGSs. They enable
a component of a CDGS to rewrite a sentential form only if it is at most, exactly,
or at least k-competent, resp., on that string. CDGSs working in the ≤2-comp.-
or =2-comp.-mode of derivation characterize the class of recursively enumerable
languages, while those working in the ≥2-comp.-mode of derivation character-
ize the class of random context ET0L languages, which in turn equals the class
of recurrent programmed languages with appearance checking [11], that is ob-
viously included in L(RE), but it is not known whether it is strictly included
or not. In Theorem 4 we provide yet another alternative characterization of
this language class, which thus might shed new light on this longstanding open
problem.

Finally, the components of the CDGSs used in the proofs in this paper are
very simple grammars, with only a limited number of productions. The results of
this paper thus demonstrate that cooperating agents with a rather restricted level
of competence are able to solve arbitrarily complicated problems. Furthermore, if
these agents are represented by context-free grammars, then there is no difference
between the cases in which each agent has an exact level of competence and those
in which it has a bounded level of competence—compare with [9].
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Abstract. The leaf-language mechanism associates a complexity class
to a class of regular languages. It is well-known that the Σk- and Πk-
levels of the dot-depth hierarchy and the polynomial hierarchy corre-
spond in this formalism. We extend this correspondence to the Δk-levels
of these hierarchies: LeafP(ΔL

k ) = Δp
k. These results are obtained in

part by relating operators on varieties of languages to operators on the
corresponding complexity classes.

1 Introduction

The leaf-language mechanism associates a complexity class to any class of lan-
guages. It is well-known that the Σk- and Πk-levels of the dot-depth hierarchy
and the polynomial hierarchy correspond via leaf languages, i.e. for all k ≥ 1 it
holds:

LeafP(ΣL
k ) = Σp

k and LeafP(ΠL
k ) = Πp

k .

This was shown by Burtschick & Vollmer [BV98]. As an immediate conse-
quence the class of all starfree regular languages SF and the polynomial hier-
archy correspond via leaf languages: LeafP(SF) = PH. Furthermore, the k-th
full level DDk of the dot-depth hierarchy (the Boolean closure of ΣL

k ) and the
Boolean closure of Σp

k (for k = 1 called the Boolean hierarchy over NP) corre-
spond via leaf languages, i.e. LeafP(DDk) = BC(Σp

k) – results due originally to
Hertrampf et al. [HL*93]. Schmitz, Wagner and Selivanov [ScW98, Sel02] further
obtained correspondences between the classes of the Boolean hierarchies defined
over the respective Σk classes.

In this paper, we extend the correspondence of the dot-depth hierarchy and
the polynomial hierarchy to the Δk-levels of the two hierarchies. For the dot-
depth hierarchy, they are the intersections of the corresponding Σk- and Πk-
levels and for the polynomial hierarchy they are the polynomial-time Turing re-
ducibility closure of the Σk−1-class. For level 2 the correspondence LeafP(ΔL

2 ) =
Δp

2 was already shown in the unpublished manuscript [BSS99].

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 89–101, 2004.
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The proof of this result used in one direction Schützenberger’s characteriza-
tion of Δ2

L as unambiguous products [Sch76] and, for the other containment, a
method of Wagner [Wa90] showing the Δp

2-completeness of odd max sat.
The main result of the present paper is more general, showing that for all

k ≥ 2:

LeafP(ΔL
k ) = Δp

k.

A key step is to show that the complexity class captured via leaf languages by
the unambiguous polynomial closure of a variety V of languages is contained in
the Turing-reducibility closure of the class captured by V, i.e. LeafP(UPol(V)) ⊆
T ·LeafP(V). This makes use of the characterization of the UPol operator of Pin,
Straubing and Thérien [PST88].

In fact, we argue that our methods yield a much more general result, namely
that under some technical assumptions we have:

LeafP(UPol(BPol(V))) = T · ∃ · LeafP(V)

where BPol denotes the Boolean polynomial closure operator. In other words,
we can relate purely language theoretic operators to operators on complexity
classes. This is particularly significant in light of the links between algebraic
automata theory and computational complexity first uncovered by Barrington
and Thérien [BT88]. The generality of our result also allows us to shed new light
on a conjecture of Straubing and Thérien concerning regular languages K such
that LeafP(K) contains the complexity class BPP [ST03].

The paper is organized as follows. In Section 2 we recall the definition of the
dot-depth hierarchy, and of the related operators Pol and UPol. In Section 3 we
review the notion of leaf languages and the polynomial hierarchy. We establish
the main result about the Δ-classes in Section 4. Finally, we present in Section 5
two general theorems relating operators on varieties with operators on com-
plexity classes and discuss their main consequences. An extended version of this
paper is available on one of the authors’ web page: www.cs.mcgill.ca/~ptesso.

2 The Dot-Depth Hierarchy

A class of languages L is a mapping which assigns to each alphabet Σ a set of
languages Σ∗L over Σ. We will write L ∈ L as an abbreviation for L ∈ Σ∗L for
some alphabet Σ.

Let a class of languages L be given. The polynomial closure1 Pol(L) is the
class of languages consisting, for every alphabet Σ, of the finite unions of marked
products of languages from Σ∗L, i.e. languages L = L0a1L1 · · · anLn such that
the Li are languages from Σ∗L and the ai are letters from Σ. We further say that
the product L = L0a1L1 · · · anLn is unambiguous if for every word w in L there is

1 The terminology stems from the interpretation of concatenation and union as mul-
tiplication and addition respectively in the semiring Σ∗.
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a unique factorization w = w0a1w1 · · · anwn with wi ∈ Li. We denote as UPol(L)
the class of finite disjoint unions of unambiguous marked products of languages
of L. The classes of languages Co-L and BL are defined, for every alphabet Σ,
as the set of complements of languages from Σ∗L and as the Boolean closure
of Σ∗L, respectively. Co-Pol and BPol are defined as the combined operators
Co- ◦ Pol and B ◦ Pol, respectively.

Let I be set the class of languages which consists for every alphabet Σ only of
the two languages ∅ and Σ∗. The classes of the dot-depth hierarchy are defined
as the following classes of regular languages:

Definition 1 (Dot-Depth Hierarchy).

(a) ΣL
0 := ΠL

0 := ΔL
0 := DD0 := I

(b) ΣL
k+1 := Pol(DDk)

(c) ΠL
k+1 := Co-Pol(DDk)

(d) DDk+1 := BPol(DDk)
(e) ΔL

k+1 := ΣL
k+1 ∩ΠL

k+1
(f) SF :=

⋃
i≥0Σ

L
i

It should be noted that the dot-depth hierarchy presented here is sometimes
known as the Straubing-Thérien hierarchy. Other papers use the term referring
to the closely related Cohen-Brzozowski hierarchy which is defined analogously:
level 0 of the Cohen-Brzozowski hierarchy further includes the so-called gener-
alized definite languages. Although the hierarchies thus defined do not coincide,
our results can also be obtained for the levels of the Cohen-Brzozowski hierarchy.

Results of Pin and Weil [PW97] show that ΣL
k+1 ∩ ΠL

k+1 = UPol(DDk) for
all k ≥ 0. Therefore the line (e) in the above definition could be equivalently
given in terms of the UPol operator. It is known that the dot-depth hierarchy is
infinite, i.e. all classes ΣL

k , Π
L
k ,DDk, Δ

L
k for k ≥ 1 are all different [St94]. Their

union SF is the class of star-free languages.
A variety of languages V is a class of regular languages closed under Boolean

operations (i.e. eachΣ∗V is closed under finite Boolean operations), left and right
quotients (for any u in Σ∗ and L in Σ∗V the languages u−1L = {w | uw ∈ L}
and Lu−1 = {w | wu ∈ L} are also in Σ∗V) and inverse homomorphic images
(if Γ,Σ are alphabets and h is a homomorphism from Γ ∗ to Σ∗ then L in Σ∗V
implies h−1(L) = {x ∈ Γ ∗ | h(x) ∈ L} in Γ ∗ V). A positive variety is defined
similarly but the closure under complement is not required. Varieties have been
established as a most natural unit of classification of regular languages. Examples
of varieties of languages include DDk and ΔL

k for k ≥ 0, and SF while ΣL
k and

ΠL
k form only positive varieties.
The class I defined above is called the trivial variety and is contained in every

variety (and every positive variety) of languages.

3 Leaf Languages and the Polynomial Hierarchy

Let P (NP) be the set of languages computable by a Turing machine in deter-
ministic (nondeterministic) polynomial time. For a complexity class C let T ·C be
the set of languages computable in deterministic polynomial time via an oracle
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Turing machine (see e.g. [Pa94]) which uses a language from C as an oracle2. Let
∃ · C be the set of all languages L such that

L = {x | there exists y with |y| ≤ q(|x|) such that 〈x, y〉 ∈ A}

for some language A ∈ C and some polynomial q. Similarly, for an integer p, the
class Modp · C denotes the set of languages L such that

L = {x | there exists 0 (mod p) y with |y| ≤ q(|x|) and such that 〈x, y〉 ∈ A}

for some language A ∈ C and some polynomial q. Let co · C be the set of comple-
ments of C and BC · C be the Boolean closure of C. Using this operator notation
one can write for example P = T · ∅, NP = ∃ · P and Δp

2 = T · NP. The classes
of the polynomial hierarchy are defined as follows [Pa94]:

Definition 2 (Polynomial Hierarchy). Let k ≥ 1.

(a) Σp
0 := Πp

0 := Δp
0 := P (d) Δp

k+1 := T ·Σp
k

(b) Σp
k+1 := ∃ ·Πp

k (e) PH :=
⋃

i≥0Σ
p
k+1

(c) Πp
k+1 := co ·Σp

k+1

Note that NP = Σp
1 and co-NP = Πp

1 .
It is not known whether the polynomial hierarchy is in fact infinite. Nev-

ertheless, there exists an oracle relative to which all classes Σp
k , Πp

k and Δk

for k ≥ 1 are different from one another [Yao85]. Moreover, in this relativized
world, Δp

k is different from BC(Σp
k−1) because Δp

k still has a ≤p
m-complete lan-

guage while by the (relativizable) results of Kadin [Ka88] the class BC(Σp
k−1)

does not. For k = 1 and k = 2 oracles separating Δp
k from its superset Σp

k ∩Πp
k

were constructed in [BGS75] and [He84], respectively, but for larger k the au-
thors could not find a construction in the literature. On the other hand, any
PSPACE-complete oracle A collapses all these classes to P.

Let some language L over some alphabet Σ be given. The leaf language ap-
proach [BCS92, HL*93, BKS99] assigns to the language L a class LeafP(L) of
languages on the alphabet {0, 1} the following way. Let some nondeterministic
polynomial-time Turing machine N be given. Assume that it not only accepts
or rejects on every computation path but outputs a letter from the alphabet
Σ on each computation path when it terminates. N produces for every input
x ∈ {0, 1}∗ a computation tree (not necessary balanced) whose paths are ordered
in the natural way and whose leaves are labeled by letters from Σ. Therefore
the letters on the leaves form a word over the alphabet Σ which we call the
leafstring(N,x) or the yield of the computation tree. Let for each N the lan-
guage LeafN (L) ∈ {0, 1}∗ be the set of inputs x such that leafstring(N,x) is
in L, and let LeafP(L) be the set of languages LeafN (L) for some N . As an
example note that if S1 is the language {a, b}∗a{a, b}∗ over alphabet {a, b} then

2 This class is often denoted P(C), PC or ≤p
T (C).
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LeafP(S1) = NP. For a class V of languages let LeafP(V) be3 the union of the
classes LeafP(L) for L ∈ V . Note that all classes LeafP(L) and LeafP(V) are by
definition subsets of the set of languages over the alphabet {0, 1}. We will call
such classes complexity classes. Throughout this paper, we use C to denote some
complexity class and V to denote a variety.

Proposition 1. Let C be a complexity class and V be a (positive) variety of
languages.

(a) T · T · C = T · C.
(b) If C ⊆ T · LeafP(V) then BC · C ⊆ T · LeafP(V).

4 Correspondence of the Δ Levels of the Hierarchies

In this section, we establish our main theorem and show that the Δk-level of
the dot-depth hierarchy corresponds via leaf languages to the Δk-level of the
polynomial hierarchy.

We will use the following characterization of the UPol operator. Let a variety
of languages V be given: �1�V is the Boolean closure of languages4 of unambigu-
ous products L0aL1 where L0, L1 are in Σ∗V and a ∈ Σ. By [PST88], �1�V is
itself a variety of languages and this operator characterizes UPol(V):

Theorem 1 ([PST88]). Let V be a variety of languages. UPol(V) is the class
of languages obtained from V by finitely many applications of the operator �1�.

We first show that one application of this �1� can basically be simulated by
a polynomial-time Turing reduction.

Lemma 1. Let V be a variety of languages:

LeafP(�1�V) ⊆ T · LeafP(V).

Proof (Sketch). We recall the notion of syntactic congruence of a language L ⊆
Σ∗: Let x ≡L y if for any u, v ∈ Σ∗ we have uxv ∈ L iff uyv ∈ L. It is well-known
that the syntactic congruence of L has finite index if and only if L is regular.
Assume now that L0aL1 is an unambiguous concatenation with L0, L1 in Σ∗V.

For a word x ∈ Σ∗, let [x]L0 and [x]L1 denote the ≡L0 and ≡L1equivalence
classes of x respectively. Following [PST88], we let G be the graph containing:

- For any x, y ∈ Σ∗, a vertex labeled with the pair ([x]L0 , [y]L1): since L0 and
L1 are regular, there are only finitely many vertices.

- For any letter b ∈ Σ edges from ([x]L0 , [by]L1) to [xb]L0 , [y]L1). We label
these edges with triples 〈[x]L0 , b, [y]L1〉.

3 For the trivial variety, however, we define for technical reasons LeafP(I) = P.
4 The symbols � and �1 actually have a meaning as block product and the set of

locally trivial categories, respectively, see [PST88].
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Note that every x ∈ Σ∗ traces a path in this graph from vertex ([ε]L0 , [x]L1)
to vertex ([x]L0 , [ε]L1). Furthermore, if x = x0bx1 where b is the jth letter of b
then the jth edge of this path is 〈[x0]L0 , b, [x1]L1〉. Call an edge critical if it is
of the form 〈[x0]L0 , a, [x1]L1〉 with x0 ∈ L0 and x1 ∈ L1: we have x ∈ L0aL1 if
and only if the path traced out by x in G contains such a critical edge. Because
L0aL1 is unambigous however, any path in G contains at most one critical edge
(as first observed by [PST88]). In particular, if 〈[x]L0 , b, [y]L1〉 is some edge in G
then either no path with a critical edge ends at vertex ([x]L0 , [by]L1) or no path
with a critical edge starts at vertex ([xb]L0 , [y]L1).

Let N be a polynomial-time NDTM: we exhibit a polynomial-time algorithm
D which, using queries to a LeafP(V) oracle, can test whether the leafstring x
produced by N on a given input t lies in L0aL1. The algorithm will check if the
path traced by x in G contains a critical edge. Suppose for simplicity that on
any input t the computation tree of N is complete and of depth q(|t|) for some
polynomial q. Thus, x has length 2q(|t|). For any 1 ≤ k ≤ 2q(|t|) let bk denote the
kth letter in x and pk−1 and sk+1 the words such that x = pk−1bksk+1.

Lemma 2. For any polynomial-time NDTM N and any L0, L1 ∈ Σ∗V for some
variety V, there exists a polynomial-time DTM querying a LeafP(V) oracle which
given k ≤ 2q(|t|) computes the triple 〈[pk−1]L0 , bk, [sk+1]L1〉 defined above.

The proof of this lemma which can be found in the full report relies on the
simple observation that computing the ≡L0-class of x is equivalent to checking
membership of x in a finite number of languages of the form u−1L0v

−1, all of
which also lie in V. We also need to argue that DTM working with m different
oracles in LeafP(V) can be simulated by a DTM having access to a single oracle
in LeafP(V).

To check if the path traced out by x contains a critical edge, our algorithm
uses binary search to zoom in on a segment r of the path where that edge might
lie if it exists at all. Initially, we set x = r. Now let k ≤ 2q(|t|) be the middle
position of the segment r. Using Lemma 2, we compute 〈[pk−1]L0 , bk, [sk+1]L1〉: If
this edge is critical then we know that x is in L0aL1 and we can stop. Otherwise,
we consider two cases:

- if no path with a critical edge ends at vertex ([pk−1]L0 , [bksk+1]L1) then any
critical edge in the path traced out by x must occur at some later k > 2q(|t|)−1

and we continue our search on the rightmost half of r.
- symmetrically if no path with a critical edge starts from ([pk−1bk]L0 , [sk+1]L1)
we must continue our search for a critical edge in the first half of r.

As we noted above the unambiguity of L0aL1 ensures that at least one of the
above holds for any k. If both of the above hold then x cannot lie in L0aL1 and the
algorithm rejects. After q(|t|) steps of this binary search the segment r in which
the critical edge might lie consists of a single edge and we can check if it is indeed
critical and reject if it is not. So we have shown LeafP(U) ⊆ T ·LeafP(V) for the
set U of unambiguous concatenations of the form L = L0aL1 with L0, L1 ∈ V.
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Therefore:

LeafP(�1�V) = LeafP(BU) ⊆ BC · LeafP(U) ⊆ T · LeafP(V)

by Proposition 1 (b).

Now combining Theorem 1 with the idempotency of the Turing closure op-
erator T· stated in Proposition 1(a), we can obtain:

Corollary 1. Let V be a variety of languages.
LeafP(UPol(V)) ⊆ T · LeafP(V).

The authors do not know whether the reverse inclusion in the above Corol-
lary 1 holds in general, i.e. whether the UPol operator on varieties corresponds
to the Turing reducibility closure on the complexity classes. Nevertheless, Theo-
rem 3 below states that, under certain conditions, a correspondence holds at least
for the combined operator UPol ◦ BPol on language classes and the combined
operator T · ∃· on complexity classes.

We say that a language A is polynomial-time conjunctively reducible to a
language B if there is a polynomial-time oracle Turing machine for A which on
input x asks membership questions to B and accepts if and only if all questions
are answered positively. Note that the questions can be assumed to be non-
adaptive, i.e. the oracle Turing machine produces a (polynomially long) list of
questions which are asked all at once. A complexity class C is closed under
polynomial-time conjunctive reductions if every language which is polynomial-
time conjunctively reducible to a language in C is also in C. Of course every
complexity class closed under polynomial-time Turing reductions is also closed
under polynomial-time conjunctive reductions. Therefore, the Δp

k classes have
this property. Other classes have this property and in particular Σp

k and Πp
k (via

two different arguments).
For i ≥ 2, we define inductively a sequence of languages Di ⊆ Σ∗i where

|Σi| = 2i−1. FirstD2 = 0∗a2{0, a2, b2}∗. For k ≥ 3, let first Σk = Σk−1∪{ak, bk}
(where ak, bk are two new “marker” symbols) and define Dk as the set of words
w1m1w2m2 · · ·wnmnwn+1 such that the mi ∈ {ak, bk} are markers, the wi are
words in Σ∗k−1, and

- there exists i ≤ n such that wi ∈ Dk−1.
- if imin is the smallest i with wi ∈ Dk−1, then mimin = ak.

Note that imin is the only position holding a marker and whose prefix lies
in Σ∗k{ak, bk}Dk−1 but not in Σ∗k{ak, bk}Dk−1{ak, bk}Σ∗k . This can be used to
formally show:

Lemma 3. For k ≥ 2 the language Dk lies in ΔL
k .

We can now prove our main theorem:
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Fig. 1. Building a computation tree for the leaf language 0∗a2{0, a2, b2}∗

Theorem 2 (Main). For every k ≥ 2:
LeafP(Dk) = LeafP(ΔL

k ) = Δp
k.

Proof. By Corollary 1 we have for each k

LeafP(ΔL
k ) = LeafP(UPol(DDk−1)) ⊆ T · LeafP(DDk−1) ⊆ T · BC ·Σp

k−1 = Δp
k.

Of course, LeafP(Dk) ⊆ LeafP(ΔL
k ) so it remains to show thatΔp

k ⊆ LeafP(Dk).
We proceed by induction on k: our argument generalizes an original idea of Wag-
ner [Wa90] whose result can be interpreted as showing that Δp

2 ⊆ LeafP(D2).
We sketch this proof as our induction base.

We need to show that there exists a LeafP(D2) machine N that can simulate
any deterministic polynomial time machine D querying, say, a SAT oracle. N
begins by simulating the deterministic behavior of D until D asks a first query
Q. At this point N simulates the query by non-deterministically branching in
two computations (see Figure 1):

– On the left branch N attempts to verify that the oracle answers positively to
the question Q: it produces a path for each possible witness of membership of
Q in SAT. On every such path, if first checks whether the candidate-witness
is correct. If it is not, N terminates on this computation path, writing a 0 on
this leaf, otherwise, N resumes the deterministic simulation of D assuming
a positive answer to the query Q.

– On the right branch N continues the deterministic simulation of D assuming
a negative answer to the query Q.

We proceed in the same fashion for each query of D. When the simulation
of D is complete, N terminates and writes an a2 on the leaf if D accepts, and a b2
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Fig. 2. Building a computation tree for the leaf language Dk

otherwise. The key observation is that the leftmost path of N with a non-0 on
its leaf corresponds to a correct simulation of D because if a query Q is answered
negatively, all candidate witnesses are rejected and the left subtree thus created
has all its leaves labeled with 0.

Therefore the first non-0 in the leafstring is an a2 if and only if D accepts its
input x. In other words, leafstring(N,x) ∈ D2 iff x is accepted by D. This shows
Δp

2 = PSAT ⊆ LeafP(D2).
More generally, we now want to show that a deterministic polynomial-time

D querying a Σp
k oracle can be simulated by a LeafP(Dk+1) machine N . It

is convenient here to think of Σp
k as ∃ · Δp

k because the induction hypothesis
guarantees that Δp

k ⊆ LeafP(Dk). The oracle thus answers positively on query
x if there exists a witness w such that 〈x,w〉 belongs to some language K in Δp

k.
Since this class is closed under polynomial-time conjunctive reductions there
exists a NDTM M such that on input (〈x1, w1〉, . . . , 〈xn, wn〉) M produces a
leafstring from Dk if and only if each pair 〈xi, wi〉 lies in K.

We can now simulate D as follows: whenever D queries the oracle ∃ ·K with
question t, N branches into two computations:

– On the left branch, N produces a path for each possible witness wi of
membership of t. However, instead of immediately verifying that the pair
〈t, wi〉 lies in K, our simulation simply assumes this hypothesis, postpones
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its check and resumes the simulation of D assuming a positive answer to the
query.

– On the right branch, N continues the simulation of D assuming a negative
answer to the query.

Once a branch of N ’s simulation of D terminates, we need to check that all
input/witness pairs along that branch do lie in K. For this, N again branches
into two paths:

– On the left path it produces a computation tree whose leafstring lies in Dk

if and only if all input/witness pairs on that branch lie in K.
– On the right branch it writes a marker ak+1 if D has accepted on this path

of assumed oracle answers, and a marker bk+1 in the other case.

Once again, if we consider the leafstring of N , we observe that the first
subword yi sitting between two markers and lying in L indicates the valid com-
putation of D. Accordingly, the marker which lies at the right of yi is ak+1 if
and only if D accepts its input and, by definition, this happens if and only if the
leafstring lies in Dk+1.

5 Operators on Varieties Versus Operators on
Complexity Classes

In fact, in the extended version of this report, we obtain through similar argu-
ments the following much more general result:

Theorem 3. Let V be a variety of languages such that LeafP(V) is closed under
polynomial-time conjunctive reductions. Then LeafP(UPol(BPol(V))) = T · ∃ ·
LeafP(V).

We also give in the full report an explicit proof of a result hinted at but not
proved formally in [HL*93] and based on the ideas of [BT88].

Theorem 4. For any variety of languages V:

LeafP(Pol(V)) = ∃ · LeafP(V).

All these results relativize and this allows us to shed new light on the problem
of finding a leaf-language upper bound for BPP: the classical result of Lautemann
and Sipser (see [Pa94]) shows that BPP is contained in Σp

2 ∩Πp
2 and it is natural

to ask whether there is a language L in ΣL
2 ∩ΠL

2 with BPP ⊆ LeafP(L). This
we now know cannot be the case with respect to all oracles since we will have
LeafP(L) ⊆ Δp

2 whereas relativized worlds exist in which Δp
2 is strictly contained

in BPP (see e.g. [BT00]).
In [ST03], it was shown that the class of regular languages which can be de-

fined by two-variable sentences using ordinary and modular quantifiers is exactly
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the class DA ∗ Gsol = UPol(BPol(Gsol)) where Gsol denotes the class of languages
whose syntactic monoid is a solvable group. Theorem 3 can be combined with a
result of [HL*93] to show

LeafP(DA ∗ Gsol) = T · ∃ · LeafP(Gsol) = T · ∃ · MOD∗P

where MOD∗P denotes the closure of P under the Modq operators. Similarly,
for any prime q, let Gq be the class of languages whose syntactic monoids are
q-groups: we can show

LeafP(UPol(BPol(Gq)))) = T · ∃ · LeafP(Gq) = T · ∃ · MODqP.

Straubing and Thérien have conjectured that BPP and indeed the whole
polynomial hierarchy is contained in LeafP(UPol(BPol(Gsol))) but there exist
relativized worlds in which T · ∃ ·Mod2 ·P does not contain BPP [BT00] and it
is perhaps possible to further show that in this world even T · ∃ · MOD∗P does
not contain BPP. Such a result would rule out any relativizable proof of the
aforementioned conjecture.

6 Conclusion

We have shown that the Delta classes of the dot-depth hierarchy and of the
polynomial hierarchy correspond via leaf-languages. This result also holds if
we consider the Cohen-Brzozowski definition of the dot-depth hierarchy. This
extension of our result can be obtained using the “bridging” method outlined
e.g. in [Pin98] which relates the two hierarchies in a straightforward way. It is
also clear from our proofs that this correspondence still holds if we consider only
balanced computation trees in the definition of the leaf language mechanism (see
e.g. [BCS92]).

We know by Theorem 2 that there are languages in ΔL
2 , for example D2,

that capture the class Δp
2 . Using algebraic methods, one can prove that if L is

in ΔL
2 then either LeafP(L) ⊆ BC(NP) or LeafP(L) = Δp

2 but we do not know
if a similar phenomenon occurs for k ≥ 3. A related question is whether the Dk

languages which we defined are complete for the ΔL
k -classes with respect to the

reductions defined in [SeW04].
For all varieties considered in this paper, we do have that LeafP(V) is closed

under polynomial-time conjunctive reductions and this can perhaps be concluded
simply using the closure properties of the varieties. This would make Theorem 3
“cleaner” because it would shift the technical requirements to the class of lan-
guages V, with no requirements left for the complexity class LeafP(V).
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[BT88] D. Barrington, D. Thérien: Finite Monoids and the Fine Structure of
NC1, J. of the ACM 35(4), 1988, pp. 941–952.

[BKS99] B. Borchert, D. Kuske, F. Stephan: On existentially first-order definable
languages and their relation to NP, Theoret. Informatics Appl. 33, 1999,
pp. 259–269

[BSS99] B. Borchert, H. Schmitz, F. Stephan: LeafP (ΔB
2 ) = Δp

2, unpublished
manuscript, 1999

[BCS92] D. P. Bovet, P. Crescenzi, R. Silvestri: A uniform approach
to define complexity classes, Theoretical Computer Science 104, 1992,
pp. 263–283.

[BT00] H. Buhrman, L. Torenvliet, Randomness is Hard. SIAM J. Computing
30(5): 1485-1501 (2000)

[BV98] H.-J. Burtschick, H. Vollmer: Lindström Quantifiers and Leaf Language
Definability, International J. of Foundations of Computer Science 9, 1998,
pp. 277-294.

[He84] H. Heller: Relativized Polynomial Hierarchies Extending Two Levels Math-
ematical Systems Theory 17, 1984, pp. 71-84.

[HL*93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wag-
ner: On the power of polynomial-time bit-computations, Proc. 8th Structure
in Complexity Theory Conference, 1993, pp. 200–207.

[Ka88] J. Kadin: The Polynomial Time Hierarchy collapses if the Boolean Hierarchy
collapses, SIAM J. Computing 17, 1988, pp. 1263–1282.

[Pa94] C. Papadimitriou: Computational Complexity, Addison Wesley, 1990.
[Pin98] J.-E. Pin: Bridges for Concatenation Hierarchies, Proc. Int. Conf. Automata,

Languages and Programming, 1998, pp. 431–442.
[PST88] J.-E. Pin, H. Straubing, D. Thérien: Locally trivial categories and
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Abstract. Input-reversal pushdown automata are pushdown automata
with the additional power to reverse the unread part of the input. We
show that these machines characterize the family of linear context-free
indexed languages, and that k + 1 input reversals are better than k for
both deterministic and nondeterministic input-reversal pushdown au-
tomata, i.e., there are languages which can be recognized by a deter-
ministic input-reversal pushdown automaton with k + 1 input reversals
but which cannot be recognized with k input reversals (deterministic
or nondeterministic). In passing, input-reversal finite automata are in-
vestigated. Moreover, an inherent relation between input-reversal push-
down automata and controlled linear context-free languages are shown,
leading to an alternative description of Khabbaz geometric hierarchy of
languages by input-reversal iterated pushdown automata. Finally, some
computational complexity problems for the investigated language fami-
lies are considered.

1 Introduction

A pushdown automaton is a one-way finite automaton with a separate push-
down storage (PD), that is a last-in first-out (LIFO) storage structure, which is
manipulated by pushing and popping. Probably, such machines are best known
for capturing the family of context-free languages L(CFL). Pushdown automata
have been extended or restricted in various ways, and the results obtained for
these classes of machines hold for a large variety of formal language classes,
when appropriately abstracted. This led to the rich theory of abstract families
of automata (AFA), which is the equivalent of the theory of abstract families of
languages (AFL); for the general treatment of machines and languages we refer
to Ginsburg [8].

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 102–113, 2004.
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In this paper, we consider an extension of pushdown automata, so called
input-reversal pushdown automata. These machines were inspired by the recently
introduced flip-pushdown automata [17] and the “flip-pushdown input-reversal”
theorem of [11]. Basically, an input-reversal pushdown automaton is an ordinary
pushdown automaton with the additional ability to reverse the unread part of
the input during the computation. This allows the machine to read from both
ends of the input. Thus, we show that input-reversal pushdown automata become
equally powerful as linear context-free indexed languages as defined in [7]. On
the other hand, if the number of input reversals is zero, obviously the family
of context-free languages is characterized. Thus it remains to investigate the
number of input reversals as a natural computational resource. Obviously, since
by a single input reversal one can accept the non-context-free language {ww |
w ∈ {a, b}∗ }, the base level of that hierarchy is already separated. But what
about the other levels? We show that k + 1 input reversals are better than k
for both deterministic and nondeterministic input-reversal pushdown automata.
To this end, we develop a technique to decrease the number of input reversals,
whose immediate consequence is that every input-reversal pushdown language
can be transformed into a context-free language. Then by pumping arguments,
the hierarchy induced by the number of input reversals can be separated.

A closer look at the characterization of linear context-free indexed languages
in terms of input-reversal pushdown automata reveals an inherent deep rela-
tion between input-reversal automata (in general) and controlled linear context-
free grammars [9]. Loosely speaking, while the control language is verified by
the underlying basic device, the input-reversal feature mimics the actual linear
context-free derivation. Intuitively, for a family of languages A, an A-controlled
linear context-free grammar consists of a linear context-free grammar G and a
control language L in A, where the terminals of L are interpreted as labels of
rules of G. Observe, that the control of linear context-free grammars can be
iterated by starting with A and by taking the result of the kth step as class
of control languages for the (k + 1)st step. When starting this iteration process
from the context-free languages we obtain the so called geometric hierarchy of
languages [14, 15], which has its name from the geometric series involved in the
pumping lemmata for these language families. Moreover, the levels of the geo-
metric hierarchy of languages are characterized by, e.g., context-free based finite-
reversal checking-stack automata [10] or alternatively by iterated one-turn push-
down automata where the innermost pushdown is unrestricted [21]. By the above
mentioned relation of input-reversal automata and controlled linear context-free
languages we can show that a (k + 1)-iterated one-turn pushdown automaton
(where the innermost pushdown is unrestricted, respectively) can be simulated
by an input-reversal k-iterated one-turn pushdown automaton (where the in-
nermost pushdown is unrestricted, respectively) and vice versa, thus trading
one-turn pushdown iteration by input-reversal.

Finally, computational complexity aspects of languages accepted by iterated
one-turn pushdown automata (where the innermost pushdown is unrestricted)
with input-reversal are considered. It is well known that all these languages are



104 H. Bordihn, M. Holzer, and M. Kutrib

context-sensitive [14, 15]. We show that input-reversal iterated one-turn push-
down automata languages are contained within nondeterministic logarithmic
space, and moreover, whenever the innermost pushdown is unrestricted, it be-
longs to the important complexity class LOG(CFL) ⊆ P. This nicely resembles
a simulation technique of [18] for linear context-free languages. Based on these
results we prove that linear context-free (restricted) indexed languages are com-
plete for LOG(CFL) (NL, respectively). This generalizes the results for the based
classes, namely for linear context-free and context-free languages in general as
given in [18] and [19].

2 Definitions

We assume the reader to be familiar with the basics of complexity theory as
contained in the book of Balcázar et al. [4]. In particular we consider the fol-
lowing well-known chain of inclusions: NL ⊆ LOG(CFL) ⊆ P ⊆ NP. Here NL
is the class of problems accepted by nondeterministic logspace bounded Turing
machines, LOG(CFL) is the class of problems logspace many-one reducible to a
context-free language, and P (NP, respectively) is the set of problems accepted by
deterministic (nondeterministic, respectively) polynomially time bounded Tur-
ing machines. Completeness and hardness are always meant with respect to
deterministic log-space many-one reducibilities.

For the details in formal language theory we refer the reader to the book
of Hopcroft and Ullman [12]. Concerning our notations, for any set Σ, let Σ+

be the free semigroup and Σ∗ the free monoid with identity λ generated by Σ.
Set inclusion and strict set inclusion are denoted by ⊆ and ⊂, respectively.
The Chomsky hierarchy is the strict chain of inclusions L(REG) ⊂ L(LIN) ⊂
L(CFL) ⊂ L(CS) ⊂ L(RE), where L(REG) denotes the family of regular lan-
guages, L(LIN) the family of linear context-free languages, L(CFL) the family
of context-free languages, L(CS) the family of context-sensitive languages, and
L(RE) the family of recursively enumerable languages.

In the following we consider variants of pushdown automata with the ability
to reverse part of the unread input.

Definition 1. A (nondeterministic) input-reversal pushdown automaton, is a
tuple A = (Q,Σ, Γ, δ,Δ, q0, Z0, F ), where Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite pushdown alphabet, δ is a mapping from Q × (Σ ∪
{λ})×Γ to finite subsets of Q×Γ ∗ called the transition function, Δ is a mapping
from Q to 2Q, q0 ∈ Q is a initial state, Z0 ∈ Γ is a particular pushdown symbol,
called the bottom-of-pushdown symbol, which initially appears on the pushdown
storage, and F ⊆ Q is a set of final states.

A configuration or instantaneous description of an input-reversal pushdown
automaton is a triple (q, w, γ), where q is a state in Q, w is a string of input
symbols, and γ is a string of pushdown symbols. An input-reversal pushdown
automaton A is said to be in configuration (q, w, γ) if A is in state q with w
as remaining input, and γ on the pushdown storage, the rightmost symbol of γ
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being the top symbol on the pushdown storage. If a is inΣ∪{λ}, w inΣ∗, γ and β
in Γ ∗, and Z is in Γ , then we write (q, aw, γZ) �A (p, w, γβ), if the pair (p, β) is
in δ(q, a, Z), for “ordinary” pushdown transitions, and (q, aw, γ) �A (p, wRa, γ),
if p is in Δ(q), for input-reversal transitions. Whenever there is a choice between
an ordinary pushdown transition or an input-reversal one, then the automaton
nondeterministically chooses the next move. As usual, the reflexive transitive
closure of �A is denoted by �∗A. The subscript A will be dropped from �A and �∗A
whenever the meaning remains clear.

Let k be a natural number. For an input-reversal pushdown automaton A we
define Tk(A), the language accepted by final state and exactly k input reversals1,
to be

Tk(A) = {w ∈ Σ∗ | (q0, w, Z0) �∗A (q, λ, γ) with exactly k
input reversals, for any γ ∈ Γ ∗ and q ∈ F }.

Furthermore, we define Nk(A), the language accepted by empty pushdown and
exactly k input reversals, to be

Nk(A) = {w ∈ Σ∗ | (q0, w, Z0) �∗A (q, λ, λ) with exactly k
input reversals, for any q ∈ Q }.

If the number of input reversals is not limited, the language accepted by
final state (empty pushdown, respectively) is analogously defined as above and
denoted by T (A) (N(A), respectively). When accepting by empty pushdown, the
set of final states is irrelevant. Thus, in this case, we usually let the set of final
states be the empty set. The special case of input-reversal finite automata and
languages is defined in the obvious way and will be investigated in the succeeding
section.

In order to clarify our notation we give an example.

Example 2. Let A = ({q0, q1}, {a, b}, {X,Y, Z0}, δ,Δ, q0, Z0, ∅) be an input-re-
versal pushdown automaton where

1. δ(q0, a, Z0) = {(q0, Z0X)}
2. δ(q0, b, Z0) = {(q0, Z0Y )}
3. δ(q0, a,X) = {(q0, XX)}
4. δ(q0, b,X) = {(q0, XY )}
5. δ(q0, a, Y ) = {(q0, Y X)}

6. δ(q0, b, Y ) = {(q0, Y Y )}
7. δ(q1, a,X) = {(q1, λ)}
8. δ(q1, b, Y ) = {(q1, λ)}
9. δ(q1, λ, Z0) = {(q1, λ)}

and Δ(q0) = {q1} that accepts by empty pushdown the non-context-free lan-
guage L = {ww | w ∈ {a, b}∗}. This is seen as follows.

1 One may define language acceptance of input-reversal pushdown automata with at
most k input reversals. Since an input-reversal pushdown automaton can count the
number of reversals performed during its computation in its finite control and it can
perform additional input-reversals at the end of the nondeterministic computation,
it is an easy exercise to show that these two language acceptance mechanisms are
equally powerful.
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The transitions (1) through (6) allow A to store the input on the pushdown.
If A decides that the middle of the input string has been reached, then the
input reversal operation specified by Δ(q0) = {q1} is selected and A goes to the
state q1 and tries to match the remaining input symbols with reversed input.
This is done with the transitions (7) and (8). Thus, A will empty its pushdown
with transition (9) and therefore accept the input string (by empty pushdown)
if and only if the guess of A was correct and the input is of the form ww.

The next theorem can be shown with a simple adaption of the proof for
ordinary pushdown automata—see, e.g., [12]. Thus, we omit the proof.

Theorem 3. Let k be some natural number. Then language L is accepted by
some input-reversal pushdown automaton A1 with empty pushdown making ex-
actly k input reversals, i.e., L = Nk(A1), if and only if language L is accepted
by some input-reversal pushdown automaton A2 by final state making exactly k
input reversals, i.e., L = Tk(A2). The statement remains valid for input-reversal
pushdown automata with an unbounded number of input reversals. ��

Moreover, we need the notion of context-free indexed grammars and lan-
guages as contained in Aho [1, 2]. A context-free indexed grammar is a five-tuple
G = (N,T, I, P, S), where N , T , and I are the finite pairwise disjoint alphabets
of nonterminals, terminals, and indexed symbols, respectively, S ∈ N is the ax-
iom, and P is a finite set of productions of the form A → α or Af → α with
A ∈ N , f ∈ I, and α ∈ (NI∗ ∪ T )∗. A sentential form x in (NI∗ ∪ T )∗ directly
derives y, for short x ⇒ y, if and only if

1. x = x1Aξx2, for x1, x2 ∈ (NI∗ ∪ T )∗, A ∈ N , and ξ ∈ I∗, production
A → X1η1X2η2 . . . Xkηk is in P with Xi ∈ N ∪T , ηi ∈ I∗, for 1 ≤ i ≤ k, and
y = x1X1θ1X2θ2 . . . Xkθkx2, where, for 1 ≤ i ≤ k, θi = ηiξ, if Xi is in N , or
θi = λ, if Xi is in T ;

2. x = x1Afξx2, for x1, x2 ∈ (NI∗∪T )∗, A ∈ N , f ∈ I, and ξ ∈ I∗, production
Af → X1η1X2η2 . . . Xkηk is a production in P with Xi ∈ N ∪T , ηi ∈ I∗, for
1 ≤ i ≤ k, and y = x1X1θ1X2θ2 . . . Xkθkx2, where, for 1 ≤ i ≤ k, θi = ηiξ,
if Xi is in N , or θi = λ, if Xi is in T .

Then the language generated by a context-free indexed grammar G with
terminal alphabet T and axiom S is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w },
where ⇒∗ denotes the reflexive transitive closure of the relation ⇒. A language
is said to be a context-free indexed language, if it is generated by a context-free
indexed grammar.

A context-free indexed grammarG = (N,T, I, P, S) is a context-free restricted
indexed grammar if N = N1∪N2 with N1∩N2 = ∅ and P contains productions of
the two forms: (1)A → α withA ∈ N1 and α ∈ (N1I

∗∪N2I
∗∪T )∗, or (2)Af → α

with A ∈ N2, f ∈ I, and α ∈ (N2I
∗ ∪ T )∗. A context-free (restricted) indexed

grammar is called linear context-free (restricted) indexed grammar if every right-
hand side of each production is in T ∗NI∗T ∗ ∪ T ∗. A language generated by a
linear context-free (restricted) indexed grammar is referred to as a linear context-
free (restricted) indexed language.
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3 Finite Automata with Input Reversals

Before we consider input-reversal pushdown automata in more detail, we inves-
tigate input-reversal finite automata. First we show that a constant number of
input reversals does not increase the computational power.

Theorem 4. Let k be some natural number. Then language L is accepted by
some input-reversal finite automaton A = (Q,Σ, δ,Δ, q0, F ) with exactly k (at
most k) input-reversals, i.e., L = Tk(A) if and only if L is regular.

Proof. The implication from right to left is immediate. Conversely, we argue
as follows: First define the ordinary finite automata Ap = (Q,Σ, δ, q0, {p}), for
every p in Q. Moreover, let Bq = (Q,Σ, δ,Δ, q, F ), for every q in Q , be the input-
reversal finite automaton, which is build from A by replacing initial state q0
by q. Then by induction we show that the language Tk(A) is regular. For k = 0
the statement is obvious. By induction hypothesis assume that every language
accepted by some input-reversal finite automaton making exactly k − 1 input
reversals, for k ≥ 1, is regular. Obviously, the language Tk(A) can be written as

Tk(A) =
⋃
p∈Q

q∈Δ(p)

L(Ap) · (Tk−1(Bq))
R
,

by cutting at the first input reversal that appears during a computation. Then by
induction hypothesis Tk−1(Bq) is regular, and so is L by the closure properties
of regular languages under concatenation and reversal. This proves the stated
claim. ��

Whenever the number of input reversals is not restricted to be constant, then
we find the following situation:

Theorem 5. The language L is accepted by some input-reversal finite automa-
ton (with an unbounded number of input-reversals) if and only if L is a linear
context-free language.

Proof. Let L be accepted by some input-reversal nondeterministic finite au-
tomaton A = (Q,Σ, δ,Δ, q0, F ). We construct a linear context-free grammar as
follows: Let G = (N,Σ, P, q0), where N = Q ∪ { pR | p ∈ Q }, the union being
disjoint, and the production set P = P1 ∪ P2 ∪ P3 with

P1 = { p → aq | q ∈ δ(p, a) } ∪ { pR → qRa | q ∈ δ(p, a) },
P2 = { p → qR | q ∈ Δ(p) } ∪ { pR → q | q ∈ Δ(p) },

and
P3 = { p → λ | p ∈ F } ∪ { pR → λ | p ∈ F }.

Then by induction one can verify that

(p, w) �∗A (q, λ) if and only if p ⇒∗ wq and pR ⇒ qRwR in G,
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if the computation of A on word w is without any input reversal. Moreover, if
q ∈ Δ(p), then

(p, λ) �A (q, λ) if and only if p ⇒ qR and pR ⇒ q in G.

Combining these statements one immediately deduces that the language ac-
cepted by A equals the language generated by G, i.e, T (A) = L(G). To this end
rules from the production set P3 have to be applied in order to terminate the
derivation. The tedious details are left to the reader.

For the converse implication let G = (N,T, P, S) be a linear context-free
grammar in normal form, that is, all productions are of the forms A → aB, A →
Ba, or A → a—see, e.g., [12]. We construct an input-reversal finite automaton
fromG as follows: Let A = (Q,T, δ,Δ, S, F ), whereQ = N∪{AR | A ∈ N }∪{Λ}
the union being disjoint, F = {Λ}, and δ and Δ are specified as follows: For
every A in N and a in T let

δ(A, a) = {B ∈ N | A → aB ∈ P, } ∪ {Λ | A → a ∈ P }
and

δ(AR, a) = {BR ∈ N | A → Ba ∈ P, } ∪ {Λ | A → a ∈ P }.

Moreover, for every A in N define Δ(A) = {AR} and Δ(AR) = {A}. By easy
means, one observes that A ⇒∗ wB if and only if (A,w) �∗A (B, λ) and A ⇒∗ Bw
if and only if (AR, wR) �∗A (B, λ), for A,B ∈ N and w ∈ T ∗. Similar statements
are valid in case of termination. This immediately implies, together with the
input-reversal relation Δ, that every word generated by the linear context-free
grammarG is acceptable by the input-reversal finite automatonA and vice versa.
Thus, L(G) = T (A). ��

4 Pushdown Automata with Input Reversals

In this section we will see that Theorem 5 from the previous section nicely gen-
eralizes to an infinite hierarchy of language classes within the context-sensitive
languages—more precisely, we will obtain an alternative characterization of Khab-
baz geometric hierarchy of languages [15]. Before we consider input-reversal
pushdown automata in general, we have to introduce A-controlled linear context-
free grammars. Intuitively, for some family of languages A, an A-controlled linear
context-free grammar consists of a linear context-free grammar G = (N,T, P, S)
and a control language L in A, where the terminals of L are interpreted as labels
of rules of G. More formally, this reads as follows:

Let G = (N,T, P, S) be a linear context-free grammar, where every rule
in P has some label r. Let Λ denote the set of all labels. Take a language
L ⊆ Λ∗. A derivation S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ αn = w ∈ T ∗ in G using the
rules with labels r1, r2, . . . , rn in Λ is valid if and only if the word r1r2 . . . rn

belongs to L. Then the language generated by G under L-control is the set of
all terminal words that can be generated by a valid derivation. If we take the
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language L from a formal language class A, then we call the grammar an A-
controlled linear context-free grammar, the generated language an A-controlled
linear context-free language. The control of linear context-free grammars can be
iterated by starting with A and by taking the result of the kth step as class of
control languages for the (k + 1)st step. For k ≥ 1, let CTRLk(A) refer to the
kth level of this hierarchy and define CTRL0(A) = A. In this way, we obtain
two hierarchies, namely CTRLk(LIN) and CTRLk(CFL), respectively. Observe,
that CTRL1(CFL) (CTRL1(LIN), respectively) is equal to the family of linear
context-free (restricted, respectively) indexed languages [7]. Now we are ready
to state our next theorem.

Theorem 6. The language L is accepted by some input-reversal pushdown au-
tomaton with empty pushdown (by final state) number of input-reversals if and
only if L is a linear context-free indexed language.

Proof. Recall the proof of Theorem 5. When constructing a grammar from a
given input-reversal pushdown automaton we end up with a linear context-free
grammar whose derivation is controlled by a context-free language. Since the
family of context-free-controlled linear context-free languages is equal to the
family of a linear context-free indexed languages the implication from left to
right follows.

On the other hand, when starting with a linear context-free indexed language
or equivalently with a context-free-controlled linear context-free language, again
the proof of Theorem 5 can be adapted, such that now an input-reversal push-
down automaton instead of an input-reversal finite automaton is constructed.
As the reader may see, the control language is verified by the underlying ba-
sic device, while the input-reversal feature mimics the actual linear derivation.
Since the construction is quite straight-forward we omit the technical details.
This shows the implication from right to left. ��

An immediate consequence of Theorem 6 is that unary linear context-free
indexed languages, i.e., languages over a singleton letter alphabet, are regular.
Therefore, we obtain the following statement.

Corollary 7. If L is a unary language accepted by some input-reversal push-
down automaton, then L is a regular language. ��

In fact the relation between controlled linear context-free languages and
input-reversal pushdown automata generalizes further. First, if one restricts to
one-turn pushdown automata, we find the following corollary. Since by the proof
of the above given theorem we have argued, that the control language of a con-
trolled linear context-free grammar is verified by the underlying basic device,
the input-reversal feature mimics the actual linear context-free derivation, the
“one-turn” restriction of the indexed strings translates to the appropriate re-
striction of the pushdown storage. Due to the lack of space we omit the proof of
the following corollary, which reads as follows:
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Corollary 8. The language L is accepted by some input-reversal one-turn push-
down automaton with empty pushdown (by final state) if and only if L is a linear
context-free restricted indexed language. ��

Moreover, one can give also an alternative characterization of Khabbaz ge-
ometric hierarchy of languages. To this end, one has to introduce k-iterated
one-turn pushdown automata—see, e.g., [21]. Note, that a language L belongs
to CTRLk(LIN) (CTRLk(CFL), respectively), for k ≥ 1, if and only if L is
accepted by a k-iterated one-turn pushdown automaton (where the innermost
pushdown is unrestricted, respectively). The below given theorem shows that a
(k + 1)-iterated one-turn pushdown automaton can be simulated by an input-
reversal k-iterated one-turn pushdown automaton and vice versa, thus trading
pushdown iteration by input-reversal. Here input-reversal k-iterated one-turn
pushdown automata are defined as k-iterated one-turn pushdown automata, with
the additional ability of input reversals. Since the proof follows similar lines as
that of Theorem 6 and is based on the relation between controlled linear-context
free languages and iterated one-turn pushdown automata (where the innermost
storage is an unrestricted pushdown) we omit it.

Theorem 9. Let k be some natural number. Then language L is accepted by
some input-reversal k-iterated one-turn pushdown automaton with empty push-
down (by final state) if and only if L is accepted by some (k+1)-iterated one-turn
pushdown automaton with empty pushdown (by final state). The statement re-
mains valid in case the first storage is an unrestricted pushdown. ��

In the remainder of this section we restrict ourself to input-reversal (one-
turn) pushdown automata, considering the hierarchy of languages induced by
the number of input reversals. First we state an essential technique for input-
reversal pushdown automata, which reads as follows—we omit the proof and
leave the details to the reader:

Theorem 10. Let k be a natural number. Language L is accepted by an input-
reversal pushdown automaton A1 = (Q,Σ, Γ, δ,Δ, q0, Z0, ∅) by empty pushdown
with k + 1 input reversals, i.e., L = Nk+1(A1), if and only if the language

LR = {w$vR | (q0, w, Z0) �∗A1
(q1, λ, Z0γ) without any reversals, q2 ∈ Δ(q1),

and (q2, vR, Z0γ) �∗A1
(q3, λ, λ) with exactly k input reversals }

is accepted by an input-reversal pushdown automaton A2 by empty pushdown
with k input reversals, i.e., LR = Nk(A2), where $ is a new symbol not contained
in Σ. The statement remains valid if state acceptance is considered. ��

Now we are ready for the separation of the levels of the input-reversal push-
down hierarchy. The proof of the hierarchy follows closely the proof of a hierarchy
on the number of pushdown flips in [11]. Nevertheless, there are some slight dif-
ferences, which make our statement even harder to prove. For convenience we
omit most of the technical details.
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Theorem 11. Let k be a natural number. Then there is a language L, which
is accepted by a (k+ 1)-input-reversal (deterministic) pushdown automaton, but
cannot be accepted by any k-input-reversal pushdown automaton.

Sketch of Proof. We define the language

Lk = {#w1#w2# . . .#wk#wk# . . .#w2#w1# | wi ∈ {a, b}∗ for 1 ≤ i ≤ k }.

Language Lk+1 is accepted by a (deterministic) input-reversal pushdown au-
tomaton A making k+ 1 input reversals as follows. Automaton A starts to read
and to store subword w1. On the symbol # between w1 and w2 it reverses the re-
maining input. So, (q0,#w1# . . .#w1#, Z0) �∗A (q1,#wR

1 # . . .#wR
2 #, Z0w1) is

computed. Next, automaton A compares the pushdown content w1 with the
next subword of the current input, i.e., with wR

1 . The computed configura-
tion is (q2,#wR

2 # . . .#wR
2 #, Z0). Now the process repeats. The next stage is

(q3,#wR
3 # . . .#wR

2 #, Z0w
R
2 ) �∗A (q4,#w2# . . .#w3#, Z0w

R
2 ), which leads to

(q5,#w3# . . .#w3#, Z0). Finally, when all pairs of subwords match, the input
is accepted.

Next we give evidence that Lk+1 cannot be accepted by any k-input-reversal
pushdown automaton. Assume to the contrary, that language Lk+1 is accepted
by some k-input-reversal pushdown automaton A with exactly k input reversals.
Then applying Theorem 10 exactly k times (from left to right), results in a
context-free language L. Now the idea is to pump an appropriate word from L
and to undo the input-reversals, in order to obtain a word that must be in Lk+1,
but is not due to its form. From this contradiction the assertion follows. If the
pumping is done such that no input reversal boundaries in the word are pumped,
then the input-reversals can be undone. In order to prevent the boundaries from
being pumped, we use the generalization of Ogden’s lemma, which is due to
Bader and Moura [3] and incorporates excluded positions. Though little is known
about the context-free language, it is easy to see that the words must have
subwords of the forms Σ∗vΣ∗vΣ∗ or Σ∗uΣ∗vΣ∗uΣ∗vΣ∗, where Σ = {a, b,#}.
On these subwords we can apply the generalized pumping lemma in order to
obtain words in Lk+1 that are not of the appropriate form. ��

5 On the Complexity of Input-Reversal Languages

We consider some computational complexity problems of input-reversal lan-
guages in more detail.

Theorem 12. Let k ≥ 1 be some natural number. Then every language L ac-
cepted by some k-iterated one-turn pushdown automaton (where the first storage
is an unrestricted pushdown, respectively) is contained in NL (LOG(CFL), re-
spectively).

Proof. We prove the statement by induction on k. If k = 1 the the statement
follows in both cases from Sudborough [18, 19]. Now assume k ≥ 1. Instead
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of iterated pushdowns we use the characterization in terms of controlled linear
context-free grammars. So let a linear context-free grammar G = (N,T, P, S, Λ)
with control language from level k − 1 be given. Without loss of generality we
may assume that the linear context-free grammar is in normal form. Assume w =
a1a2 . . . an to be the input of length n. Define the triples [A, i, j] with A ∈ N and
0 ≤ i, j ≤ n. To each triple [A, i, j] associate the word a1a2 . . . aiAaj+1aj+2 . . . an

if i < j and λ otherwise. Then the following algorithm checks membership for the
language under consideration: Start the algorithm with triple [S, 0, n], where S is
the axiom ofG. (1) Guess a rule r = (A → α) from P , where A is the nonterminal
of the actual triple. (2) Check whether A → α is applicable to the associated
sentential form and replace the triple accordingly. More precisely, replace [A, i, j]
with (i) [B, i + 1, j], if α = aB and ai+1 = a, (ii) with [B, i, j − 1], if α = Ba
and aj = a, (iii) with the empty word if α = a, i+ 1 = j, and ai+1 = a. If this
is not the case, then halt and reject. (3) We continue the simulation starting
with (1) until we have reached the empty word. (4) In passing the algorithm
writes down the labels of the guessed rules. If the written word belongs to the
control language, then we halt and accept. Otherwise, we halt and reject.

The interested reader may verify the correctness of the described algorithm.
We implement the algorithm on an oracle auxiliary one-turn pushdown automa-
ton, where the oracle tape is written deterministically [16], in order to simulate
step (4). To be more precise, the one-turn pushdown storage is used to protocol
the labels of the guessed rules, and to written them on the oracle tape at the very
ending of the simulation. The space of the machine (as usual the oracle tape is
not taken into consideration) is bounded by the size of the triples [A, i, j], which
is clearly logarithmic.

Hence membership for k-iterated one-turn pushdown languages can be veri-
fied in NL, because the space of the oracle auxiliary one-turn pushdown automa-
ton is logarithmically bounded, while the time is polynomial, the oracle set is
in NL by induction hypothesis, and NAux1-tPDA-SpaceTime(logn, poln)〈NL〉 ⊆
NL [13, 20]. Analogously we estimate the complexity of k-iterated one-turn push-
down languages, where the first storage is an unrestricted pushdown to be con-
tained within LOG(CFL), since the oracle set is in LOG(CFL) be induction
hypothesis, and NAuxPDA-SpaceTime(logn, poln)〈LOG(CFL)〉 ⊆ LOG(CFL),
which is due to Borodin et al. [6, 5]. ��

Since the lowest levels, i.e., the linear context-free and context-free lan-
guages, respectively, of the above mentioned hierarchies are NL- and LOG(CFL)-
complete, respectively, we immediately obtain the following completeness result:

Theorem 13. The following problems are complete with respect to deterministic
logspace many-one reductions: Let k ≥ 1 be some natural number.

1. The fixed membership problem for k-input-reversal one-turn pushdown lan-
guages, where the first storage is an unrestricted pushdown, is LOG(CFL)-
complete and

2. the fixed membership problem for k-input-reversal one-turn pushdown au-
tomata languages is NL-complete. ��
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Abstract. We study the maximum function of any R+-rational formal
series S in two commuting variables, which assigns to every integer n ∈ N,
the maximum coefficient of the monomials of degree n. We show that if
S is a power of any primitive rational formal series, then its maximum
function is of the order Θ(nk/2λn) for some integer k ≥ −1 and some
positive real λ. Our analysis is related to the study of limit distribu-
tions in pattern statistics. In particular, we prove a general criterion for
establishing Gaussian local limit laws for sequences of discrete positive
random variables.

1 Introduction

The general observation motivating this paper is the following. Consider a ra-
tional fraction p(x)

q(x) where p(x) and q(x) are two polynomials with coefficients in
the field of real numbers (with q(0) �= 0). It is well-known that the coefficient
of the term xn of its Taylor expansion is asymptotically equivalent to a linear
combination of expressions of the form nk−1λn where λ is a root of q(x) and k
its multiplicity, cf. [10, Theorem 6.8] or [16, Lemma II.9.7]. It is natural to ask
whether a similar evaluation holds for formal series in two variables both in the
commutative and in the noncommutative case.

The purpose of this work is to pose the problem in more general terms.
Indeed, assume we are given a semiring K whose underlying set is contained
in the reals, e.g., Z, N, R+, etc. Assume further we are given a monoid M
that is either the free monoid or the free commutative monoid over a finite
alphabet. Consider next a rational formal series r over M with coefficients in
K and denote by (r, x) the corresponding coefficient of the element x ∈ M.
Denoting by |x| the length of x, we want to investigate the maximum function
gr(n) = max{|(r, x)| : x ∈ M, |x| = n}, where |(r, x)| denotes the absolute value
of (r, x). We note that the same definition can be extended to the formal series
over trace monoids [6].

For rational formal series over a free monoid with integer coefficients, the
growth of the coefficients was investigated in [17] (see also [14]), where it is
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c© Springer-Verlag Berlin Heidelberg 2004



On Maximum Coefficients of Rational Formal Series 115

proved that for such a series r either there exists k ∈ N such that gr(n) = O(nk)
or |(r, ωj)| ≥ c|ωj | for a sequence of words {ωj} of increasing length and for some
constant c > 1. In the first case, the series is the sum of products of at most
k + 1 characteristic series of regular languages over the free monoid (see also
[2, Corollary 2.11]). When the semiring of coefficients is N the problem is related
to the analysis of ambiguity of formal grammar (or finite automata) generating
(recognizing, resp.) the support of the series; a wide literature has been devoted
to this problem (see for instance [12, 20] and [21, 22] for a similar analysis in the
algebraic case).

As far as the growth of coefficients is concerned, another case can be found
in the literature. It is related to the tropical semiring T whose support is the set
N ∪ {∞} and whose operations are the min for the addition and the + for the
multiplication. In [19], Imre Simon proves that for all T -rational series s over the
free monoid {a, b}∗, there exists an integer k such that (s, w) = O(|w|1/k) holds
for all w ∈ {a, b}∗. Moreover it is proven that for each positive integer k, there
exists a T -rational series sk such that gsk

(n) = Θ(n1/k). Thus, the hierarchy is
strict though it is not proven that all series have an asymptotic growth of this
kind.

In the present work, we study the maximum function of rational formal series
in two commuting variables a, b with coefficients in R+. As far as we know, the
general problem of characterizing the order of magnitude of gS(n) for such a
series S is still open, though some contributions can be found in the literature
[3]. We prove the following

Theorem. For any positive k ∈ N and any primitive R+-rational formal series
r in the noncommutative variables a, b, if S is the commutative image of rk

then, for some λ > 0, its maximum function satisfies the relation

gS(n) =
{

Θ(nk−(3/2)λn) if r is not degenerate
Θ(nk−1λn) otherwise

This result is obtained by studying the limit distribution of the discrete ran-
dom variables {Xn} naturally associated with the series S: each Xn takes on
values only in {0, 1, . . . , n} and Pr{Xn = i} is proportional to the coefficient
(S, aibn−i). We prove that Xn has a Gaussian limit distribution whenever S is a
power of a primitive formal series r as described above. Under the same hypoth-
esis we also give a local limit theorem for {Xn} based on the notion of symbol-
periodicity introduced in [4]. When the symbol-periodicity associated with r is 1
we just obtain a local limit theorem for {Xn} in the sense of DeMoivre-Laplace
[9]. The material we present also includes a general criterion for local limit laws
that is of interest in its own right and could be useful in other contexts. It holds
for sequences of discrete random variables with values in a linear progression of
a fixed period d included in {0, 1, . . . , n}.

The paper is organized as follows: after some preliminaries on rational series
and probability theory, in Section 4 we present the new criterion for local limit
laws. Then, we recall basic definitions and properties of the stochastic models
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defined via rational formal series. In Section 6 we give global and local limit
theorems for the pattern statistics associated with powers of primitive rational
formal series (power model). In the last section, we illustrate our main result on
the maximum function of rational formal series in two commutative variables.

Due to space constraints, the proofs of Section 4 are omitted and can be
found in Appendix for referees’ convenience.

2 Preliminaries on Formal Series

Given a monoid M and a semiring K we call formal series over M any applica-
tion r : M −→ K, usually denoted as an infinite formal sum r =

∑
w∈M(r, w)w,

which associates with each w ∈ M its coefficient (r, w) ∈ K. The set of all
series over M with coefficients in K is a monoid algebra, provided with the
usual operations of sum, product and star restricted to the elements r such that
(r, 1M) = 0K. These operations are called rational operations. A series r is called
rational if it belongs to the smallest set closed under rational operations, con-
taining the series 0 and all the series χw, for w ∈ M, such that (χw, w) = 1 and
(χw, x) = 0 for each x �= w.

In particular, in this work we fix the alphabet {a, b} and consider the formal
series over the free monoid {a, b}∗ or the free commutative monoid {a, b}⊗ with
coefficients in the semiring R+ of nonnegative real numbers. In the former case,
the family of all formal series is denoted by R+〈〈a, b〉〉. By Kleene’s Theorem
[16, 15], we know that every rational r ∈ R+〈〈a, b〉〉 admits a linear representation
over {a, b}, i.e. a triple (ξ, μ, η) such that, for some integer m > 0, ξ and η
are (non-null column) vectors in Rm

+ and μ : {a, b}∗ −→ Rm×m
+ is a monoid

morphism, satisfying (r, w) = ξTμ(w) η for each w ∈ {a, b}∗. We say that m is
the size of the representation.

Observe that considering such a triple is equivalent to defining a (weighted)
nondeterministic finite automaton over the alphabet {a, b}, where the state set
is given by {1, 2, . . . ,m} and the transitions, the initial and the final states are
assigned weights in R+ by μ, ξ and η respectively.

Analogously, the family of all formal series over {a, b}⊗ with coefficients in
R+ is denoted by R+[[a, b]]. In this case, any element of {a, b}⊗ is represented in
the form aibj . The canonical morphism ϕ : {a, b}∗ → {a, b}⊗, associating with
each w ∈ {a, b}∗ the monomial aibj where i = |w|a and j = |w|b, extends to the
semiring of formal series: for every r ∈ R+〈〈a, b〉〉

(ϕ(r), aibj) =
∑

|x|a=i,|x|b=j

(r, x) .

Notice that, since ϕ is a morphism, for every rational series r ∈ R+〈〈a, b〉〉 ,
the commutative image ϕ(r) is rational in R+[[a, b]].

For our purpose, a subset of rational series of particular interest is defined by
the so-called primitive linear representations. We recall that a matrixM ∈ Rm×m

+
is primitive if for some k ∈ N all entries of Mk are strictly positive. The main
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property of these matrices is given by the Perron–Frobenius Theorem, stating
that any primitive matrix M has a unique eigenvalue λ of largest modulus,
which is real positive (see for instance [18, Chapter 1]). Such a λ is called the
Perron-Frobenius eigenvalue of M .

Thus, a linear representation (ξ, μ, η) defined over a set of generators {a, b} is
called primitive if μ(a)+μ(b) is a primitive matrix. We also say that a series r ∈
R+〈〈a, b〉〉 is primitive if it is rational and admits a primitive linear representation.
Moreover, we say that (ξ, μ, η) is degenerate if μ(σ) = 0 for some σ ∈ {a, b}.
Analogously, we say that r ∈ R+〈〈a, b〉〉 is degenerate if, for some σ ∈ {a, b},
(r, w) �= 0 implies w ∈ {σ}∗.

Given a monoid M, let us assume that a length function | · | : M −→ N
is well-defined for M such that the set {x ∈ M : |x| = n} is finite for each
n ∈ N. Then, for any formal series s : M −→ C we define the maximum
function gs : N −→ R+ as

gs(n) = max{|(s, x)| : x ∈ M, |x| = n} (for every n ∈ N).

In the following | · | will denote both the modulus of a complex number and
the length of a word: the meaning will be clear from the context.

Our main results concern the order of magnitude of gr(n) for some r ∈
R+[[a, b]]. To state them precisely we use the symbol Θ with the standard mean-
ing: given two sequences {fn}, {gn} ⊆ R+ , the equality gn = Θ(fn) means
that for some pair of positive constant c1, c2, the relation c1fn ≤ gn ≤ c2fn

holds for any n large enough.

3 Convergence in Distribution

Let X be a random variable (r.v.) with values in a set {x0, x1, . . . , xk, . . .} of
real numbers and set pk = Pr{X = xk}, for every k ∈ N. We denote by FX

its distribution function, i.e. FX(τ) = Pr{X ≤ τ} for every τ ∈ R. If the set of
indices {k | pk �= 0} is finite we can consider the moment generating function of
X, given by

ΨX(z) = E(ezX) =
∑
k∈N

pke
zxk ,

which is well-defined for every z ∈ C. This function can be used to compute
the first two moments of X, since E(X) = Ψ ′X(0) and E(X2) = Ψ ′′X(0), and to
prove convergence in distribution. We recall that, given a sequence of random
variables {Xn}n and a random variable X, Xn converges to X in distribution
(or in law) if limn→∞ FXn

(τ) = FX(τ) for every point τ ∈ R of continuity for
FX . It is well-known that if ΨXn

and ΨX are defined all over C and ΨXn
(z) tends

to ΨX(z) for every z ∈ C, then Xn converges to X in distribution [9].
A convenient approach to prove the convergence in law to a Gaussian random

variable relies on the so called “quasi-power” theorems introduced in [11] and
implicitly used in the previous literature [1] (see also [7]). For our purpose we
present the following simple variant of such a theorem.



118 C. Choffrut, M. Goldwurm, and V. Lonati

Theorem 1. Let {Xn} be a sequence of random variables, where each Xn takes
values in {0, 1, . . . , n} and let us assume the following conditions:

C1 There exist two functions r(z), y(z), both analytic at z = 0 where they take
the value r(0) = y(0) = 1, and a positive constant c, such that for every
|z| < c

ΨXn
(z) = r(z) · y(z)n

(
1 + O(n−1)

)
; (1)

C2 The constant σ = y′′(0)− (y′(0))2 is strictly positive (variability condition).

Also set μ = y′(0). Then Xn−μn√
σn

converges in distribution to a normal random
variable of mean 0 and variance 1, i.e. for every x ∈ R

lim
n−→+∞

Pr
{

Xn − μn√
σn

≤ x

}
=

1√
2π

∫ x

−∞
e− t2

2 dt .

The main advantage of this theorem, with respect to other classical state-
ments of this kind, is that it does not require any condition of independence
concerning the random variables Xn. For instance, the standard central limit
theorems assume that each Xn is a partial sum of the form Xn =

∑
j≤n Uj ,

where the Uj ’s are independent random variables [9].

4 A General Criterion for Local Convergence Laws

Convergence in law of a sequence of r.v.’s {Xn} does not yield an approximation
of the probability that Xn has a specific value. Theorems concerning approxi-
mations for expressions of the form Pr{Xn = x} are usually called local limit
theorems and often give a stronger property than a traditional convergence in
distribution1. A typical example is given by the so-called de Moivre-Laplace
Local Limit Theorem [9], which intuitively states that, for certain sequences of
binomial random variables Xn, up to a factor Θ(

√
n) the probability that Xn

takes on a value x approximates a Gaussian density at x.
In this section we present a general criterion that guarantees, for a sequence

of discrete random variables, the existence of a local convergence property of
a Gaussian type more general than DeMoivre-Laplace’s Theorem mentioned
above. In the subsequent section, using such criterion, we show that the same
local convergence property holds for certain pattern statistics.

Theorem 2 (Local Limit Criterion). Let {Xn} be a sequence of random
variables such that, for some integer d ≥ 1 and every n ≥ d, Xn takes on values
only in the set

{x ∈ N | 0 ≤ x ≤ n, x ≡ ρ(mod d)} (2)

for some integer 0 ≤ ρ < d. Assume that conditions C1 and C2 of Theorem 1
hold true and let μ and σ be the positive constants defined in the same theorem.
Moreover assume the following property:

1 For this reason, theorems showing convergence in distribution of a sequence of r.v.’s
are sometimes called global or integral limit theorems.
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C3 For all 0 < θ0 < π/d lim
n→+∞

{
√
n sup
|θ|∈[θ0,π/d]

|ΨXn
(iθ)|

}
= 0

Then, as n grows to +∞ the following relation holds uniformly for every
j = 0, 1, . . . , n:

Pr{Xn = j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
de− (j−μn)2

2σn

√
2πσn

· (1 + o(1)) if j ≡ ρ (mod d)

0 otherwise

(3)

Due to space constraints, the proof is omitted. We only note that it ex-
tends some ideas used in [3, Section 5] and [4, Theorem 3]. However, the present
approach is much more general: we drop any rationality hypothesis on the dis-
tribution of the r.v.’s Xn and only rely on conditions C1, C2, C3 together with
the assumption that each Xn takes on values only in the set (2).

Observe that ΨXn
(iθ) is the so-called characteristic function of Xn, it is peri-

odic of period 2π and it assumes the value 1 at θ = 0. Condition C3 states that,
for every constant 0 < θ0 < π/d, as n grows to +∞, the value ΨXn

(iθ) is of the
order o(n−1/2) uniformly with respect to θ ∈ [−π/d,−θ0] ∪ [θ0, π/d]. Note that
ρ may depend on n even if ρ = Θ(1).

One can easily show that any sequence {Xn} of binomial r.v.’s of parameters
n and p, where 0 < p < 1 (i.e. representing the number of successes over n
independent trials of probability p), satisfies the hypothesis of the theorem with
d = 1. In this case (3) corresponds to DeMoivre-Laplace Local Limit Theorem.
Thus our general criterion includes the same theorem as a special case.

Relations of the form (3) already appeared in the literature. In particular in
[9, Section 43], (3) is proved when Xn is the sum of n independent lattice r.v.’s of
equal distribution and maximum span d. Note that our theorem is quite general
since it does not require any condition of independence for the Xn’s.

We also note that, for d = 1 a similar criterion for local limit laws has been
proposed in [7, Theorem 9.10] where, however, a different condition is assumed,
i.e. one requires that the probability generating function pn(u) of Xn has a
certain expansion, for u ∈ C belonging to an annulus 1 − ε ≤ |u| ≤ 1 + ε
(ε > 0), that corresponds to assume an equation of the form (1) for z ∈ C such
that |�e(z)| ≤ δ (for some δ > 0).

5 Pattern Statistics Over Rational Series

In this section we turn our attention to sequences of random variables defined
by means of rational formal series in two non-commuting variables. We recall
definitions and properties introduced in [3, 4].

Let us consider the binary alphabet {a, b} and, for n ∈ N, let {a, b}n denote
the set of all words of length n in {a, b}∗. Given a formal series r ∈ R+〈〈a, b〉〉 ,
let n be a positive integer such that (r, x) �= 0 for some x ∈ {a, b}n. Consider the



120 C. Choffrut, M. Goldwurm, and V. Lonati

probability space of all words in {a, b}n equipped with the probability measure
given by

Pr{ω} =
(r, ω)∑

x∈{a,b}n(r, x)
(ω ∈ {a, b}n). (4)

In particular, if r is the characteristic series χL of a language L ⊆ {a, b}∗,
then Pr is just the uniform distribution over the set of words on length n in L:
Pr{ω} = "(L ∩ {a, b}n)−1 if ω ∈ L, while Pr{ω} = 0 otherwise. We define the
random variable Yn : {a, b}n → {0, 1, . . . , n} such that Yn(ω) = |ω|a for every
ω ∈ {a, b}n. Then, for every j = 0, 1, . . . , n, we have

Pr{Yn = j} =

∑
|ω|=n,|ω|a=j(r, ω)∑

x∈{a,b}n(r, x)
. (5)

For sake of brevity, we say that Yn counts the occurrences of a in the stochastic
model defined by r. If r = χL for some L ⊆ {a, b}∗, then Yn represents the
number of occurrences of a in a word chosen at random in L ∩ {a, b}n under
uniform distribution.

A useful tool to study the distribution of the pattern statistics Yn is given by
certain generating functions associated with formal series. Given r ∈ R+〈〈a, b〉〉,
for every n, j ∈ N let rn,j be the coefficient of ajbn−j in the commutative
image ϕ(r) of r, i.e.

rn,j = (ϕ(r), ajbn−j) =
∑

|x|=n,|x|a=j

(r, x) .

Then, we define the function rn(z) and the generating function r(z, w) by

rn(z) =
n∑

j=0

rn,j ejz and r(z, w) =
+∞∑
n=0

rn(z) wn =
+∞∑
n=0

n∑
j=0

rn,j ejz wn

where z and w are complex variables. Thus, from the definition of rn,j and from
equation (5) we have

Pr{Yn = j} =
rn,j

rn(0)
, ΨYn(z) =

rn(z)
rn(0)

. (6)

Moreover, we remark that the relation between a series r and its generating
function r(z, w) can be expressed in terms of a semiring morphism . Denoting
by Σ⊕ the free commutative monoid over the alphabet Σ, consider the monoid
morphism H : {a, b}∗ −→ {ez, w}⊕ defined by setting H(a) = ezw and H(b) = w.
Then, such a map extends to a semiring morphism from R+〈〈a, b〉〉 to R+[[ez, w]]
so that

H(r) = r(z, w) (7)

for every r ∈ R+〈〈a, b〉〉 . This property translates arithmetic relations among
formal series into analogous relations among the corresponding generating func-
tions.

When r is rational, the probability spaces given by (4) define a stochastic
model (called rational stochastic model) of interest for the analysis of pattern
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statistics. A typical goal in that context is to estimate the limit distribution
of the number of occurrences of patterns in a word of length n generated at
random according to a given probabilistic model (usually a Markovian process
[13]). In the rational model, the pattern is reduced to a single letter a. However,
the analysis of Yn in such a model includes as a particular case the study of the
frequency of occurrences of regular patterns in words generated at random by a
Markovian process [3, Section 2.1].

The limit distribution of Yn is studied in [3] in the global sense and in [4] in
the local sense, assuming that r admits a primitive linear representation (ξ, μ, η).
Set A = μ(a) and B = μ(b). Then it is easy to see that in this case

r(z, w) = ξT (I − w(Aez +B))−1
η . (8)

It turns out that Yn has a Gaussian limit distribution [3, Theorem 4], and
this extends a similar result, earlier presented in [13] for pattern statistics in a
Markovian model. A local limit property of the form (3) also holds, where d is
the so-called x-period of Ax+B [4, Theorem 4].

We recall (see [4]) that given a polynomial f =
∑

k fkx
k ∈ R+[x], the x-

period of f is defined as the value D(f) = GCD{|h − k| : fh �= 0 �= fk}, where
we assume GCD({0}) = GCD(∅) = +∞. For any matrix M ∈ R+[x]m×m

and any index q ∈ {1, 2, . . . ,m}, the x-period of q is the value d(q) = GCD
{D((Mn)qq) | n ≥ 0}, assuming that every non-zero element in N∪{+∞} divides
+∞. It turns out that, for every matrix M(x) ∈ R+[x]m×m such that M(1) is
primitive, all indices have the same x-period, which is called the x-period of M .

We conclude this section presenting some results proved in [4] we use in the
following section. They give interesting properties of the x-period of a matrix of
the form M1x+M2 , where M1 �= 0 �= M2 and M1 +M2 is primitive.

Proposition 3. Consider two non-null matrices M1,M2 ∈ Rm×m
+ , assume that

M1 + M2 is primitive and let d be the x-period of M1x + M2. Then d is finite
and there exists an integer 0 ≤ γ < d such that for any pair of indices p, q ∈
{1, 2, · · · ,m} and for any integer n large enough, we have D((M1x+M2)n

pq) ≡
γn+ δpq (mod d) for a suitable integer 0 ≤ δpq < d independent of n.

Proposition 4. Consider two non-null matrices M1,M2 ∈ Rm×m
+ , assume that

M1+M2 is primitive and denote by λ its Perron-Frobenius eigenvalue. Moreover
let d be the x-period of M1x+M2. Then, for any real number θ �= 2kπ/d (k ∈ Z),
all eigenvalues of M1e

iθ +M2 are in modulus smaller than λ.

6 Pattern Statistics in the Power Model

In this section, we consider a stochastic model defined by the power of any prim-
itive rational series (note that in this case the model is not primitive anymore)
and we study the central and local behaviour of the associated pattern statistics
Yn. The results we obtain extend the analysis developed in [3] and [4] concerning
the primitive rational stochastic models. They also extend some results presented
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in [5], where the (global) limit distribution of Yn is determined whenever r is the
product of two primitive formal series.

Theorem 5. For any positive integer k and any primitive nondegenerate r ∈
R+〈〈a, b〉〉, let s be defined by s = rk and let Yn be the random variables counting
the occurrences of a in the model defined by s. Then the following properties hold
true.

T1 There exist two constants α and β, satisfying 0 < α and 0 < β < 1, such
that Yn−βn√

αn
converges in distribution to a normal random variable of mean

value 0 and variance 1.
T2 If (ξ, μ, η) is a primitive linear representation for r and d is the x-period

of μ(a)x + μ(b), then there exist d many functions Ci : N −→ R+, i =
0, 1, . . . , d − 1, such that

∑
i Ci(n) = 1 for every n ∈ N and further, as n

grows to +∞, the relation

Pr{Yn = j} =
d C〈j〉d

(n)√
2παn

e− (j−βn)2

2αn · (1 + o(1)) (9)

holds uniformly for every j = 0, 1, . . . , n (here 〈j〉d = j −  j/d!d).
We note that in case k = 1 statement T1 coincides with [3, Theorem 4] and

statement T2 corresponds to [4, Theorem 4].
We split the proof of the previous theorem in two separate parts and we use

the criteria presented in Theorem 1 and in Theorem 2. We still use the notation
introduced in the previous section: set A = μ(a), B = μ(b), M = A + B and
denote by λ the Perron Frobenius eigenvalue of the primitive matrix M .

Proof of T1. Since s = rk, by applying the morphism H defined in (7) we get

s(z, w) = r(z, w)k .

From equation (8), since A+B is primitive and both A and B are non-null,
one can show [3, Section 4] that near the point (0, λ−1) the function r(z, w)
admits a Laurent expansion of the form

r(z, w) =
R(z)

1 − u(z)w
+ O(1)

where R(z) and u(z) are complex functions, non-null and analytic at z = 0.
Moreover, the constants α = (u′′(0)−β2)/λ and β = u′(0)/λ are strictly positive.
We also recall that α and β can be expressed as function of the matrix M and
in particular of its eigenvectors.

As a consequence, in a neighbourhood of (0, λ−1) we have

s(z, w) =
(

R(z)
1 − u(z)w

)k

+ O
(

1
1 − u(z)w

)k−1

and hence the associated sequence is of the form

sn(z) = R(z)k

(
n + k − 1

k − 1

)
u(z)n + O

(
nk−2u(z)n

)
.
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Now, by the definition of our stochastic model, the characteristic function of
Yn is given by ΨYn

(z) = sn(z)/sn(0) and hence, in a neighbourhood of z = 0, it
has an expansion of the form

ΨYn(z) =
sn(z)
sn(0)

=
(

R(z)
R(0)

)k

·
(

u(z)
λ

)n

·
(
1 + O(n−1)

)
.

As a consequence, both conditions of Theorem 1 hold with μ = β and σ = α
and this proves the result. �

Proof of T2 (Outline). For every p, q ∈ {1, 2, . . . ,m}, let r(pq) be the series
defined by the linear representation (ξpep, μ, ηqeq), where ei is the characteristic
array of entry i. Then r =

∑
p,q r

(pq). Thus, since s = rk, we have

s =
∑

∗
r(p1q1) · r(p2q2) · · · r(pkqk) (10)

where the sum is over all sequences � = p1q1p2q2 · · · pkqk ∈ {1, 2, . . . ,m}2k. For
sake of brevity, for every such �, let r(�) be the series

r(�) = r(p1q1) · r(p2q2) · · · r(pkqk) (11)

and let Y (�)
n denote the r.v. counting the occurrences of a in the model defined

by r(�). Then, the primitivity hypothesis allows one to prove that the relation

Pr{Yn = j} =
∑

∗
C� Pr{Y (�)

n = j} + O(n−1)

holds for every j ∈ {0, 1, . . . , n}, where C� is a non-negative constant for each �
and

∑
� C� = 1.

Thus, to determine the local behaviour of {Yn}, we first study {Y (�)
n } for any

� such that r(�) �= 0. Indeed, by the previous relation, it is sufficient to prove
that the equation

Pr{Y (�)
n = j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d e− (j−βn)2

2αn

√
2παn

· (1 + o(1)) if j ≡ ρ� (mod d)

0 otherwise

holds uniformly for every j = 0, 1, . . . , n, where α and β are defined as in T1,
while ρ� is an integer (possibly depending on n) such that 0 ≤ ρ� < d (in
particular Ci(n) =

∑
ρ�=i C� for each i). To this aim, we simply have to show

that, for every n ∈ N, Y (�)
n satisfies the hypotheses of Theorem 2.

First, one can prove that Y (�)
n takes on values only in a set of the form (2).

This is a consequence of the fact that the values r(�)n,j are given by the convolutions

r
(�)
n,j =

∑
n1+n2+···+nk=n

j1+j2+···+jk=j

∏
r
(piqi)
ni,ji

together with Proposition 3.
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As far as condition C1 and C2 are concerned, we can argue (with obvious
changes) as in the proof of T1 and observe that the two constants α and β are
the same for all series r(�) �= 0, since they depend on the matrices A and B (not
on the initial and final arrays).

To prove condition C3 let us consider the generating function of {r(�)n (z)},
obtained by applying the morphism H to (11):

r(�)(z, w) =
k∏

j=1

ξpj (I − w(Aez + B))−1
pjqj

ηqj .

Applying Proposition 4, one can prove that all singularities of r(�)(iθ, w) are in
modulus greater than λ−1. Hence, by Cauchy’s integral formula, for any arbitrary
θ0 ∈ (0, π/d) we can choose 0 < τ < λ such that the associated sequence
{rn

(�)(iθ)} is bounded by O(τn) for every |θ| ∈ [θ0, π/d]. Analogously, one
gets rn

(�)(0) = Θ(nk−1λn) and this also implies Ψ
Y

(�)
n

(iθ) = rn
(�)(iθ)/rn

(�)(0) =
O(εn) for some 0 < ε < 1. This yields condition C3 and concludes the proof. �

As a final remark, we note that Theorem 5 cannot be extended to all rational
models because the “quasi-power” condition C1 does not hold for ΨYn

(z) in the
general case. In fact, a large variety of limit distributions for Yn are obtained in
rational models that have two primitive components [5] and more complicated
behaviours occur in multicomponent models [8].

7 Estimate of the Maximum Coefficients

The result proved in the last section provides us an asymptotic evaluation for
the maximum coefficients of formal series in commuting variables that are com-
mutative image of powers of primitive rational formal series.

Corollary 6. For any k ∈ N, k �= 0 and any primitive series r ∈ R+〈〈a, b〉〉,
let s = rk and consider its commutative image S = ϕ(s) ∈ R+[[a, b]]. Then, for
some λ > 0, the maximum function of S satisfies the relation

gS(n) =
{

Θ(nk−(3/2)λn) if r is not degenerate
Θ(nk−1λn) otherwise

Proof. Let (ξ, μ, η) be a primitive linear representation of r and let λ be the
Perron-Frobenius eigenvalue of μ(a)+μ(b). To determine gS(n) we have to com-
pute the maximum of the values sn,j = (S, ajbn−j) for j = 0, 1, . . . , n.

First consider the case when r is not degenerate. Then, let Yn count the oc-
currences of a in the model defined by s = rk and recall that Pr(Yn = j) =
sn,j/sn(0). Now, reasoning as above, we have sn(0) = Θ(nk−1λn) and by Theo-
rem 5, the set of probabilities {Pr(Yn = j) | j = 0, 1, . . . , n} has the maximum at
some integer j ∈ [βn−d, βn+d], where it takes on a value of the order Θ(n−1/2)
and this proves the first equation.

On the other hand, if r is degenerate, then either μ(a) = 0 or μ(b) = 0. In
the first case, all rn,j vanish except rn,0 which is of the order Θ(λn). Hence for
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every n, the value maxj{sn,j} = sn(0) is given by the k-th convolution of rn,0,
which is of the order Θ(nk−1λn). The case μ(b) = 0 is similar. �

Example. Consider the rational function (1 − a − b)−k. Its Taylor expansion
near the origin yields the series

S =
+∞∑
n=0

(
n+ k − 1
k − 1

) n∑
j=0

(
n

j

)
ajbn−j

By direct computation, one can verify that

gS(n) =

(
n + k − 1

k − 1

)(
n

�n/2

)
= Θ(nk−3/22n) .

In fact, it turns out that S = ϕ(rk) where r = χ{a,b}∗ ∈ R+〈〈a, b〉〉. �

Even though the statement of Theorem 5 cannot be extended to all ratio-
nal models, we believe that the property given in Corollary 6 well represents
the asymptotic behaviour of maximum coefficients of all rational formal series
in two commutative variables. We actually think that a similar result holds for
all rational formal series in commutative variables. More precisely, let us in-
troduce the symbol Θ̂ with the following meaning: for any pair of sequences
{fn}, {gn} ⊆ R+, we have gn = Θ̂(fn) if gn = O(fn) and gnj

= Θ(fnj
) for some

monotone strictly increasing sequence {nj} ⊆ N. Then we conjecture that the
asymptotic behaviour of the maximum function of every rational formal series
t ∈ R+[[σ1, · · · , σ�]], is of the form

gt(n) = Θ̂
(
nk/2λn

)
for some integer k ≥ 1 − � and some λ ∈ R+.
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Abstract. We consider the classes of ⊕-codes and ⊗-codes, which are
superclasses of outfix and hypercodes, respectively. These restrictions are
based on the synchronized insertion operation, which serves as a model
for the gene rearrangement function in certain unicellular organisms.
We investigate the classes of ⊕-codes and ⊗-codes from a theoretical
perspective, examine their relationships with traditional code classes and
consider related decidability problems.

1 Introduction

The theory of codes is a fundamental area in formal language theory, and is cru-
cial to several applied areas, such as data compression and error detection. Sev-
eral interesting classes of codes can be defined by use of binary word operations
via a fixed language equation, namely L∩(L"Σ+) = ∅. These classes include, for
example, the classes of prefix, outfix and hypercodes. Recently, languages which
are defined by shuffle on trajectories and the same language equation have been
studied [5].

In this paper, we examine the classes of languages defined by the same fixed
equation and using the synchronized insertion operation, recently defined and
studied by Daley et al. [2–4]. The synchronized insertion operation models part
of the DNA unscrambling process of the stichotrichous ciliates [3]. We note that
the synchronized insertion operation falls outside the class of language operations
defined by shuffle on trajectories.

These classes of languages have many interesting theoretical properties, and
their study is inspired by the biology of gene scrambling in ciliates. One of the
hypotheses for the existence of scrambled genes in ciliates is the notion that
errors introduced during the descrambling process may speed up the process of
evolution. We can view languages in this class as a set of genomes which are
maximally evolved in the sense that further applications of the synchronized
insertion operation will not allow us to obtain a genome which is a member of
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our starting population. An alternate view is that these languages may represent
genomes which are “evolutionary dead-ends”.

The concept of codes in relation to DNA has previously received attention
in the literature. Kari et al. [12, 13] have studied DNA languages which avoid
undesirable bonding properties and also posses certain coding properties (such
as being code or a solid code). We also note the more recent work of Kari et al.
[14] which recasts the previous work in a more general framework (the article
also contains a list of references for works relating to DNA codewords and the
theory of codes).

Most of the previous work on DNA languages and codes has focused on the
bonding properties of DNA strands, and the applications of bond-free strands to
DNA computing. This work takes an alternate view, by considering languages
which satisfy code-like properties under operations implied by nature.

In this paper, we are primarily interested with the theoretical properties of
languages which are the analogs of outfix and hyper-codes under the equivalent
operations on DNA strands (i.e., those derived from synchronized insertion). We
find that synchronized operations yield codes which have interesting differences
from the usual (“unsynchronized”) operations. For example, every maximal syn-
chronized outfix code must be infinite, a fact which is not seen in the related
unsynchronized classes of codes.

2 Preliminaries

Let Σ be an alphabet, i.e, a finite set of elements called letters. Finite sequences
of letters are called words. The empty word (the word consisting of no letters) is
denoted by ε. Let Σ∗ be the set of finite all words over Σ, and let Σ+ = Σ∗− ε.
A language is any subset of Σ∗.

Given a word w = w1 . . . wn ∈ Σ∗, where wi ∈ Σ for all 1 ≤ i ≤ n, its
length, denoted |w|, is n. For all w ∈ Σ∗ and a ∈ Σ, |w|a is the number of
occurrences of a in w. If L ⊆ Σ∗ is a language, let alph(L) ⊆ Σ be the set of
all letters appearing in some word in L: alph(L) = {a ∈ Σ : Σ∗aΣ∗ ∩ L �= ∅}.
Given alphabets Σ,Δ, a morphism is any function h : Σ∗ → Δ∗ satisfying
h(xy) = h(x)h(y) for all x, y ∈ Σ∗. Recall that a morphism h : Δ∗ → Σ∗ is a
weak coding if h(b) ∈ Σ ∪ {ε} for all b ∈ Δ. For additional background of formal
languages, we refer the reader to Rozenberg and Salomaa [17].

We now turn to the synchronized insertion operation, originally defined by
Daley and Kari [3]. The synchronized insertion operation, denoted ⊕, is defined
on words x, y ∈ Σ∗ as follows: x⊕y = {x1αy1αx2 : x1, x2, y1 ∈ Σ∗, α ∈ Σ+, x =
x1αx2, y = y1α}. It is known that we may take the word α to be of length one
without loss of generality [2], that is, we have that

x⊕ y = {x1ay1ax2 : x1, x2, y1 ∈ Σ∗, a ∈ Σ, x = x1ax2, y = y1a}.

The synchronized deletion operation, denoted $, is defined on words x, y ∈ Σ∗

as follows: x$ y = {x1αx2 : x1, x2, y1 ∈ Σ∗, α ∈ Σ+, x = x1αy1αx2, y = y1α}.
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Once again, α may be taken to be of length one without loss of generality:

x$ y = {x1ax2 : x1, x2, y1 ∈ Σ∗, a ∈ Σ+, x = x1ay1ax2, y = y1a}.

The following result [2], which states that $ and ⊕ are mutual left-inverses
(in the sense defined by Kari [11]), will prove useful:

Lemma 2.1. For all x, y, z ∈ Σ∗, x ∈ y ⊕ z ⇐⇒ y ∈ x$ z.

Define the shuffle of two words x, y ∈ Σ∗ as follows:

x y = {
n∏

i=1

xiyi : x =
n∏

i=1

xi, y =
n∏

i=1

yi; xi, yi ∈ Σ∗(1 ≤ i ≤ n)}.

Define the insertion operation as x ← y = {x1yx2 : x1, x2 ∈ Σ∗, x1x2 = x}.
We introduce the operation of synchronized scattered insertion1, denoted ⊗,

on words x, y ∈ Σ∗ as follows:

x⊗ y =

{
(

n∏
i=1

xiaiyiai)xn+1 : x = (
n∏

i=1

xiai)xn+1,

y = (
n∏

i=1

yiai), xj , yi ∈ Σ∗, ai ∈ Σ, (1 ≤ j ≤ n+ 1, 1 ≤ i ≤ n)

}
.

Further, we introduce the analogous synchronized scattered deletion opera-
tion, denoted �, on words x, y ∈ Σ∗ as follows:

x� y =

{
(

n∏
i=1

xiai)xn+1 : x = (
n∏

i=1

xiaiyiai)xn+1,

y = (
n∏

i=1

yiai), xj , yi ∈ Σ∗, ai ∈ Σ, (1 ≤ j ≤ n+ 1, 1 ≤ i ≤ n)

}
.

We note that the contexts ai in the previous two definitions could be allowed
to be of arbitrary length, however, this does not affect the definitions of ⊗ or �.

We note that for all words x, y ∈ Σ∗, x ⊕ y ⊆ x ⊗ y (resp., x $ y ⊆ x � y).
However, equality does not hold, as is easily observed. We note that ⊗ (resp., �)
serves as the transitive closure of ⊕ (resp., $), in the same sense that shuffle is
the transitive closure of insertion ← (see Domaratzki [5] for definitions relating
trajectory-based operations to binary relations and transitivity). This is our
motivation for introducing ⊗ and �; we note that these operations themselves
are not designed to model a single step in any biological process.

We extend the definition of these operations from words to languages as
follows: for all " ∈ {$,⊕,←, ,⊗,�}, and all L1, L2 ⊆ Σ∗,

L1 " L2 =
⋃

x∈L1
y∈L2

x " y.

1 We avoid the term synchronized shuffle, which has been used in the literature to
denote a different operation, see, e.g., Latteux and Roos [15].
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A language L is a code (or ∗-code, if there is confusion) if each word w ∈ L∗

has a unique decomposition in L, i.e., for all n,m ≥ 0, w1, . . . , wn, u1, . . . , um ∈
L, u1u2 · · ·um = w1w2 · · ·wn implies that n = m and ui = wi for all 1 ≤ i ≤ n.

A language L ⊆ Σ+ is said to be a prefix code (resp., suffix, outfix, hyper
code) if LΣ+∩L = ∅ (resp. Σ+L∩L = ∅, (L ← Σ+)∩L = ∅, (L Σ+)∩L = ∅).
A language L ⊆ Σ+ is said to be a biprefix code if L is both a prefix and suffix
code. For more background on codes, see Berstel and Perrin [1], or Jürgensen
and Konstantinidis [10].

We note that the prefix, suffix, outfix and hypercodes are defined by an
equation of the form L ∩ (L " Σ+) = ∅ for some ". This motivates our main
definitions, which relate the notions of codes to bio-operations. For all non-empty
languages L ⊆ Σ+, say that L is a

1. synchronized outfix code (or, briefly, ⊕-code) if (L⊕Σ+) ∩ L = ∅;
2. synchronized infix code (or, briefly, ⊕R-code) if (Σ+ ⊕ L) ∩ L = ∅;
3. synchronized hypercode (or, briefly, ⊗-code) if (L⊗Σ+) ∩ L = ∅.

Informally, we collectively refer to synchronized infix, synchronized outfix and
hypercodes as bio-codes. We note some examples:

Example 2.1. Let L = {anbn : n ≥ 1} ⊆ {a, b}+. Then L is a ⊕-code. To see
this, let x ∈ aibi ⊕ y for some y ∈ {a, b}+. If y ∈ {a, b}∗a, then x ∈ {ajyai−jbi :
1 ≤ j ≤ i}. But certainly then x /∈ {anbn : n ≥ 1}. The case where y ∈ {a, b}∗b
is similar. Thus, L is a ⊕-code. L is not a ⊗-code as ab⊗ ab ( aabb.

Example 2.2. Let Lab = {x ∈ {a, b}+ : |x|a = |x|b}. Then as abab ∈ ab ⊕ ba,
L ∩ (L⊕ {a, b}+) �= ∅. Thus, Lab is not a ⊕-code.

Example 2.3. The language L = {a, ab, ba, b} is a ⊗-code. Note that L is not a
hypercode, as ab ∈ a b.

We briefly note the motivation for the definitions of ⊕- and ⊗-codes. As the
operation ⊕ is modelled to represent the modification of DNA by the insertion
of a strand of DNA between marked positions, languages which are ⊕-codes are
sets of DNA strands which are immune to further insertion of genetic material
via the ⊕ operation. As for ⊗-codes, these represents sets of DNA strands which
are immune not only to one insertion via the ⊕ operation, but several of these
insertions.

3 The Synchronized Scattered Insertion and Deletion
Operations

As the operations ⊗,� have not been investigated before, we begin by noting
some of their properties. The following result states that ⊗ and � are mutual
left-inverses of each other. The proof is straight-forward, and is left to the reader.
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Lemma 3.1. For all x, y, z ∈ Σ∗, x ∈ y ⊗ z ⇐⇒ y ∈ x� z.

We will also need the following technical lemma:

Lemma 3.2. Let Σ be an alphabet. Let u, β1, β2 ∈ Σ∗ z ∈ Σ+ and a ∈ Σ. If
uaβ1 ∈ uaβ2 ⊗ z, then there exists z′ ∈ Σ∗ such that uaβ1 ∈ uaβ2 ⊗ z′ and no
portion of z′ is inserted into ua (i.e., aβ1 ∈ aβ2 ⊗ z′).

Next, we briefly investigate the closure properties of ⊗ and �.

Lemma 3.3. Let Σ be an alphabet. There exist an alphabet Δ ⊇ Σ, a regular
language R ⊆ Δ∗ (resp., R′ ⊆ Δ∗) and weak codings ρ1, ρ2, ϕ : Δ∗ → Σ∗ (resp.,
π1, π2, ψ : Δ∗ → Σ∗) such that for all L1, L2 ⊆ Σ∗, L1 ⊗ L2 = ϕ(ρ−1

1 (L1) ∩
ρ−1
2 (L2) ∩R). (resp., L1 � L2 = ψ(π−1

1 (L1) ∩ π−1
2 (L2) ∩R′)).

Recall that a cone (or full trio) is a class of languages closed under mor-
phism, inverse morphism and intersection with regular languages. The regular,
context-free and recursively enumerable languages are all examples of cones. The
following positive closure properties follow immediately:

Corollary 3.1. Let C be any cone. Then for all languages L1, L2 such that one
of L1, L2 is in C and the other is regular, the languages L1 ⊗ L2, L1 � L2 ∈ C.

Thus, for instance, the regular languages are closed under ⊗ and �.

4 Bio-codes and Other Code Classes

We first note that the use of the word ‘code’ for ⊕-code (as well as ⊕R- and
⊗-codes) is somewhat of an abuse of terminology, as ⊕-codes are not necessarily
∗-codes. Indeed, if we consider L = {a, ab, b}, we can verify that L is a ⊕-code,
but a · b = ab, so that L is not a ∗-code. Similarly, L is also a ⊗-code.

Further, even if we replace concatenation with synchronized insertion, ⊕-
codes do not satisfy the corresponding ∗-code property. In particular, say that
a language L is a ∗-⊕-code if, for all n,m ≥ 1 and all xi, yj ∈ L (for 1 ≤ i ≤ n
and 1 ≤ j ≤ m), ((· · · (x1 ⊕ x2) ⊕ x3) · · · ⊕ xn) = ((· · · (y1 ⊕ y2) ⊕ y3) · · · ⊕ ym)
implies that n = m and xi = yi for all 1 ≤ i ≤ n. (A definition which requires
not equality but a non-trivial intersection is also possible; it does not affect the
observation below.) Note that L = {ab, ba} is a ⊕-code. However, L is not a
⊕∗-code, since ab⊕ ab = {abab} = ab⊕ ba.

Next, we note that the classes of ∗-codes and ⊕-codes are incomparable.
As we have noted, not every ⊕-code is a ∗-code. Further, the language ab∗ is a
prefix code, and hence a ∗-code, but it is not a ⊕-code. The following result gives
relations between classical code classes and their synchronized counterparts.

Lemma 4.1. Let L ⊆ Σ+ be an outfix code (resp., infix code, hypercode). Then
L is a ⊕-code (resp., ⊕R,-code, ⊗-code).
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Further, we note that every ⊗-code is a ⊕-code. Other relationships be-
tween bio-codes and classical code classes are easily verified. We summarize
the relationships between codes, ⊕-codes (SO), ⊗-codes (SH) outfix codes (O),
prefix codes (P), suffix codes (S), and hypercodes (H) in Figure 1. The lan-
guages referred to in Figure 1 by number are as follows: L1 = {aab, a, ab},
L2 = {ab, aabb, a, b}, L3 = {a, b, ab}, L4 = ab∗ + d∗c, L5 = {a, abcd, aabccd, d},
L6 = {a, ab, c, dc}, L7 = ba∗, L8 = {anbn : n ≥ 1}∪{a}, L9 = {b, ba}, L10 = a∗b,
L11 = {anbn : n ≥ 1} ∪ {b} L12 = {b, ab}, L13 = ba∗b, L14 = {anbn : n ≥ 1}
L15 = {ac, abc}, L16 = {anban : n ≥ 1} and L17 = {ac, abcd}.

Synchronized hypercodes

1
CodesOutfix Codes

Synch.

Hypercodes

11

10

16

17

15

14
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8
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2
4

63
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L
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Fig. 1. Relationships between bio-codes and various classes of codes

5 Properties of Bio-codes

We now investigate some general properties of the classes of bio-codes under con-
sideration. The following property holds for outfix codes as well as synchronized
outfix codes (see, e.g., Ito et al. [9]):

Lemma 5.1. Let L ⊆ Σ+ be a regular language. If L is a ⊕-code then L is
finite.

Our main result in this section will be an extension of Higman’s Theorem [8],
which can interpreted as follows:

Theorem 5.1. Let Σ be a finite alphabet. Every hypercode over Σ is finite.
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We note also the work of Haines [6], which gives some interesting formal
language theoretic consequences of Higman’s Theorem. We require the following
easily proven lemma:

Lemma 5.2. Let Σ be a finite alphabet. Let S be an infinite language over Σ.
Then there exist u, v ∈ Σ∗, a ∈ Σ and S′ ⊆ S such that S′ is infinite and
S′ ⊆ uavaΣ∗.

We now prove our main result. Our proof is based on the proof of Higman’s
Theorem given by Lothaire [16].

Theorem 5.2. Let Σ be a finite alphabet. Every synchronized hypercode over Σ
is finite.

Proof. Assume, contrary to what we want to prove, that there is an infinite
synchronized hypercode over Σ. Then there exists an infinite sequence {xi}i≥1
of words over Σ such that i < j implies xj /∈ xi ⊗Σ+. By abuse of terminology,
call such a sequence division-free.

Choose (using the axiom of choice) a minimal such division-free sequence as
follows: let y1 be the shortest word starting an infinite division-free sequence. Let
y2 be the shortest word such that y1, y2 begins an infinite division-free sequence.
Continuing in this way, let {yi}i≥1 be the resulting division-free sequence.

By Lemma 5.2, the infinite set {yi}i≥1 contains an infinite subset which is
contained in uavaΣ∗ for some a ∈ Σ and u, v ∈ Σ∗. Let {ij}j≥1 ⊆ IN be defined
such that yij

= uavaβj for all j ≥ 1. For all j ≥ 1, define zj = uaβj .
Consider the sequence {y1, y2, . . . , yi1−1, z1, z2, . . .}. Clearly, it is smaller than

our minimal sequence {yi}i≥1. Thus, it is not division-free. We have that yj /∈
yi ⊗ Σ∗ for all 1 ≤ i < j < i1, by our choice of {yi}i≥1. Thus, there are two
cases:

(a) There exists 1 ≤ k < k′ such that zk′ ∈ zk ⊗Σ+. Let α ∈ Σ+ be such that
zk′ ∈ zk ⊗α. Consider zk′ = uaβk′ and zk = uaβk. But now it is clear that there
exists α′ such that yik′ = uavaβk′ ∈ uavaβk ⊗α′ = yik

⊗α′ by Lemma 3.2. This
contradicts that {yi}k

i=1 is division-free.
(b) There exist 1 ≤ k < i1 and k′ ≥ 1 such that zk′ ∈ yk⊗Σ+. Note that ik′ > k.
Let α ∈ Σ+ be chosen so that zk′ = uaβk′ ∈ yk ⊗ α. It is not hard to show that
there exist α1, α2 ∈ Σ∗ such that α = α1α2 and uavaβk′ ∈ yk ⊗ α1vaα2. This
is a contradiction, since yik′ = uavaβk′ , and thus yik′ ∈ yk ⊗Σ+, contradicting
that {yi}i≥1 is division-free.

Thus, we have arrived at a contradiction. ��

6 Maximal Bio-codes

Call a ⊕-code L ⊆ Σ+ maximal if L′ is not a ⊕-code for all L ⊂ L′ ⊆ Σ+, where
⊂ denotes proper inclusion. Similarly, we define maximal ⊗-codes and maximal
⊕R-codes.
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By Zorn’s Lemma, it is easy to see that if L ⊆ Σ+ is a ⊕-code (⊗-, ⊕R-code),
there exists some Lm ⊆ Σ+ such that L ⊆ Lm and Lm is a maximal ⊕-code
(⊗-, ⊕R-code). We can also appeal to dependency theory [10].

We now explicitly demonstrate a maximal ⊕-code.

Example 6.1. The language L ⊆ {a, b}+ given by

L = {anbn : n ≥ 1} ∪ {bnan : n ≥ 1} ∪ {a, b}

is a maximal ⊕-code. To see this, consider an arbitrary x ∈ {a, b}+ such that
x /∈ L. We show that L ∪ {x} is not a ⊕-code. We assume that x begins with
a; the case where x begins with a b is completely symmetrical. There are three
cases:

(a) x ∈ a(a + b)∗a: Let x = aua for some u ∈ {a, b}∗. Note that x ∈ a ⊕ ua ⊆
L⊕ {a, b}+.

(b) x ∈ a∗b∗: Let x = aibj with i �= j. If i > j then x ∈ ajbj ⊕ai−j . If i < j then
x ∈ aibi ⊕ bj−i. In either case x ∈ L⊕ {a, b}+.

(c) x ∈ a+(b{a, b}∗a)b+. Let x = aibuabj for some i, j ≥ 1 and u ∈ Σ∗. There are
two subcases: If i ≥ j, then note that x = aj(ai−jbua)bj ∈ ajbj ⊕ ai−jbua.
If i < j, then x = aib(uabj−i+1)bi−1 ∈ aibi ⊕ uabj−i+1. In any case, x ∈
L⊕ {a, b}+. Thus, L is a maximal ⊕-code.

Example 6.2. The language L = {a, ab, ba, b} is a maximal ⊗-code.

We now turn to finite maximal ⊕-codes. It is easy to see that for Σ = {a},
the language L = {ai} is a maximal ⊕-code for any i ≥ 1. We now show that
unary alphabets are the only alphabets for which finite maximal ⊕-codes exist.
This is in contrast to the case of outfix codes, where there exist finite maximal
outfix codes, e.g., L = {a3, ab, ba, b3} ⊆ {a, b}+ [9]. We require the following
observation, which is easily established:

Observation 6.1. Let Σ be an alphabet with |Σ| ≥ 2. Let a, b ∈ Σ with a �= b.
For all x ∈ Σ+, |(x⊕Σ+) ∩ {anbn : n ≥ 1}| ≤ 1.

Lemma 6.1. Let Σ be an alphabet with |Σ| ≥ 2. If L ⊆ Σ+ is a maximal
⊕-code, then L is infinite.

Proof. Let L ⊆ Σ+ be a maximal ⊕-code. Let a, b ∈ Σ with a �= b. Assume,
contrary to what we want to prove, that L is finite. Let m = |L| and � =
max{|x| : x ∈ L}.

Consider the set S = {a�+1+jb�+1+j : 0 ≤ j ≤ m}. Note that S ∩ L = ∅.
As L is a maximal ⊕-code, L ∪ {x} is not a ⊕-code for all x ∈ S. In particular,
since any x ∈ S is longer than any word in L, for all x ∈ S there exists some
yx ∈ L such that x ∈ yx ⊕ Σ+. By Observation 6.1, if x, x′ ∈ S with x �= x′,
then yx �= yx′ . But as |S| > |L|, this is a contradiction. Thus, L is not a maximal
⊕-code, as there is some x ∈ S such that x /∈ L ⊕ Σ+, and thus L ∪ {x} is a
⊕-code. ��
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Thus, we note that singleton languages over a unary alphabet are the only
regular languages which are maximal ⊕-codes.

Corollary 6.1. If L ⊆ Σ+ is a regular maximal ⊕-code, then Σ = {a} and
L = {ai} for some i ≥ 1.

As a consequence, we also note that, though every outfix code is a ⊕-code,
not every maximal outfix code is a maximal ⊕-code. Indeed, we have previously
noted that there exist finite maximal outfix codes over a two letter alphabet.
The following characterization of maximal ⊕-codes will prove useful:

Lemma 6.2. Let L ⊆ Σ+ be a ⊕-code (resp., ⊕R-code, ⊗-code). Then L is a
maximal ⊕-code (resp., maximal ⊕R-code, maximal ⊗-code) iff L∪(L⊕Σ+)∪(L$
Σ+) = Σ+. (resp., L∪(Σ+⊕L)∪(Σ+$L) = Σ+, L∪(L⊗Σ+)∪(L�Σ+) = Σ+).

7 Closure Properties

We now consider the closure properties of the classes of ⊕- and ⊗-codes. It
is clear that every subset of a ⊕-code is an ⊕-code, and thus the non-empty
intersection of an ⊕-code with an arbitrary language is an ⊕-code.

Further, it is clear that the class of ⊕-codes are not closed under union with
a singleton language, which is shown by the existence of a maximal ⊕-code
(Example 6.1).

We now state the positive closure properties:

Theorem 7.1. The class of ⊕-codes is closed under (a) ε-free inverse mor-
phism, (b) reversal and (c) quotient with a single word (modulo the empty word).

The following can also be established in the same manner as Theorem 7.1.

Theorem 7.2. The class of ⊗-codes is closed under (a) ε-free inverse mor-
phism, (b) reversal and (c) quotient with a single word (modulo the empty word).

We now turn to non-closure properties:

Theorem 7.3. The class of ⊗-codes (resp., ⊕-codes) is not closed under (a)
concatenation (with a single letter), (b) Kleene closure, (c) (1-uniform) mor-
phism, (d) arbitrary inverse morphism, (e) quotient (with an arbitrary finite
language), (f) synchronized insertion (with an arbitrary finite language), (g)
synchronized scattered insertion (with an arbitrary finite language), and (h) syn-
chronized deletion of a single letter.

We now demonstrate some more specialized closure properties.

Lemma 7.1. Let L1, L2 ⊆ Σ+ be ⊕-codes such that L1 is a prefix code and L2
is a suffix code. Then L1L2 is an ⊕-code.

The following lemma is analogous to the corresponding result for outfix codes
[9–Lemma 3.13]:

Lemma 7.2. Let L1, L2 ⊆ Σ+. If L1L2 is a non-empty ⊕-code, then L1, L2 are
⊕-codes.
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8 Decidability Problems

We now investigate the decidability questions related to bio-codes.

Lemma 8.1. Let " ∈ {⊕,⊕R}. Given a regular language R, it is decidable
whether R is a "-code.

For ⊗-codes, a better decidability result is possible, due to the fact that all
⊗-codes are finite.

Lemma 8.2. Given a CFL L, it is decidable whether L is a ⊗-code.

We now turn to undecidability:

Lemma 8.3. Let L ⊆ Σ+ be a linear CFL. Then it is undecidable whether L is
a ⊕-code.

For ⊗-codes, we have seen that it is decidable whether a CFL L is a ⊗-code.
It is not surprising that it is undecidable whether a given CSL is a ⊗-code:

Lemma 8.4. Given a context-sensitive language L ⊆ Σ+, it is undecidable
whether L is a ⊗-code.

We now turn to the questions of deciding whether a particular language is a
maximal ⊕-code.

Lemma 8.5. Let " ∈ {⊕,⊕R,⊗}. Then given a regular language R ⊆ Σ+, it is
decidable whether R is a maximal ⊕-code over Σ.

Proof. By Lemma 8.1, given R ⊆ Σ+, we can decide if R is a "-code. Let
� ∈ {$,$R,�} be chosen so that � is the left-inverse of ". If R is a "-code, by
Lemma 6.2, R is a maximal "-code iff Σ+ = R ∪ (R "Σ+) ∪ (R �Σ+). Since all
the involved languages are regular, this equality is decidable. ��

Lemma 8.6. Let C be any class of languages such that

(a) {anbn : n ≥ 0} ∪ {bnan : n ≥ 0} ∪ {a, b} ∈ C;
(b) given a language L ⊆ Σ+ in C, it is undecidable whether L = ∅, for |Σ| = 2;
(c) C is closed under union and concatenation with a regular language.

Then given a language L ⊆ Σ+, it is undecidable whether L is a maximal
⊕-code.

Corollary 8.1. Given L ∈ cs, it is undecidable whether L is a maximal ⊕-code.

Lemma 8.7. Let C be a class of languages such that

(a) C is closed under difference, and quotient with a regular language;
(b) {anbn : n ≥ 0} ∪ {bnan : n ≥ 0} ∪ {a, b} ∈ C;
(c) given a language L ⊆ Σ+ in C, it is undecidable whether L = ∅, for |Σ| = 2.

Then given a ⊕-code L ⊆ Σ+, it is undecidable whether L is a maximal
⊕-code.

Corollary 8.2. Let Σ be an alphabet with |Σ| ≥ 2. Let L ⊆ Σ+ be a recursive
⊕-code. Then it is undecidable whether L is a maximal ⊕-code.
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9 Synchronized-Insertion Closed Languages and ⊕-Codes

Let L ⊆ Σ+. Recall [4] the following definition:

sins(L) = {x ∈ Σ∗ : L⊕ x ⊆ L}.

We define the class of languages sins = {L : L ⊆ sins(L)}. A language
L ∈ sins is said to be sins-closed. For results on sins, see Daley et al. [4]. We
now consider sins(L) when L is a ⊕-code.

Lemma 9.1. Let L ⊆ Σ+ be a ⊕-code. Then

sins(L) = {ε} ∪ {x ∈ Σ+ : L⊕ x = ∅} = {ε} ∪Σ∗(Σ − alph(L)).

Corollary 9.1. The following equality holds:

{L : L is a ⊕ -code and L ∪ {ε} ∈ sins} = {∅}.

Let L = {a, aa, b} ⊆ {a, b}+. Note that sins(L) = {ε} = {ε} ∪ {x ∈ Σ+ :
L⊕ x = ∅}. However, L is not a ⊕-code. Thus, the converse of Lemma 9.1 does
not hold.

10 Concluding Remarks

We have introduced and studied here the ⊕-codes and the ⊗-codes which are
based on an operation inspired by the gene descrambling process found in sti-
chotrichous ciliates.

We have shown that the classes of ⊕-codes and ⊗-codes are disjoint from
the traditionally studied classes of ∗-codes and that all regular ⊕-codes and all
⊗-codes must be finite. We then considered maximal ⊕-codes and demonstrated
that, for alphabets of size at least two, all maximal ⊕-codes must be infinite.
We gave also an effective characterization of maximal ⊕-codes.

The classes of ⊕-codes and ⊗-codes were shown to be closed under non-
erasing inverse morphism, reversal and quotient with a singleton (modulo the
empty word). The same classes were shown not to be closed under concatenation
(with a single letter), Kleene closure, (1-uniform) morphism, arbitrary inverse
morphism, quotient (with a finite language), synchronized insertion and syn-
chronized scattered insertion (with a finite language), and synchronized deletion
of a single letter.

Turning to problems of decidability, we demonstrated that it is decidable
if a regular language is an ⊕-code while the same property is undecidable for
linear context-free languages. In contrast, we have shown that it is decidable
if an arbitrary context-free language is an ⊗-code while the same property is,
unsurprisingly, undecidable for context-sensitive languages.

Finally, we considered the effect of the sins operation [4] on ⊕-codes and
showed an exclusive relationship between the class of ⊕-codes and the class of
synchronized insertion closed languages.
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The work presented here represents a theoretical investigation of classes of
codes defined by an operation inspired by a biological process. While it is our
hope that this investigation will prove to be biologically relevant we also feel
that it has generated some theoretically compelling results and represents well
the rich variety of interesting abstract constructs which may be inferred from,
and inspired by, biological systems.
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Abstract. Let I be a finite set of words and ⇒∗
I be the derivation

relation generated by the set of productions {ε → u | u ∈ I}. Let Lε
I

be the set of words u such that ε ⇒∗
I u. We prove that the set I is

unavoidable if and only if the relation ⇒∗
I is a well quasi-order on the

set Lε
I . This result generalizes a theorem of [7]. Further generalizations

are investigated.

1 Introduction

A quasi-order on a set S is called a well quasi-order (wqo) if every non-empty
subset X of S has at least one minimal element in X but no more than a finite
number of (non-equivalent) minimal elements.

A set of words I is called unavoidable if there exists an integer k > 0 such
that any word w ∈ A+, with A = alph(I) and |w| ≥ k, contains as a factor a
word of I. A finite set I is called avoidable if it is not unavoidable.

Well quasi-orders have been widely investigated in the past. We recall the
celebrated Higman and Kruskal results [10, 15]. Higman gives a very general
theorem on division orders in abstract algebras from which one derives that
the subsequence ordering in free monoids is a wqo. Kruskal extends Higman’s
result, proving that certain embeddings on finite trees are well quasi-orders.
Some remarkable extensions of the Kruskal theorem are given in [12, 16].

In the last years many papers have been devoted to the applications of wqo’s
to formal language theory [1–8, 11].

In [7], a remarkable class of grammars, called unitary grammars, has been
introduced in order to study the relationships between the classes of context-free
and regular languages. If I is a finite set of words then we can consider the set
of productions

{ε → u, u ∈ I}

and the derivation relation ⇒∗
I of the semi-Thue system associated with I.

Moreover the language generated by the unitary grammar associated with I
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is Lε
I = {w ∈ A∗ | ε ⇒∗

I w}. Unavoidable sets of words are characterized in
terms of the wqo property of the unitary grammars. Precisely it is proved that
I is unavoidable if and only if the derivation relation ⇒∗

I is a wqo.
In this paper we give the following improvement of the previous result of [7]: A

finite set of words I is unavoidable if and only if the relation ⇒∗
I is a well quasi-

order on the language Lε
I . The crucial step of our main result is the construction

of a bad sequence of elements of Lε
I , when I is avoidable. As a consequence of our

theorem and of some results of [7] one obtains the equivalence of the following
conditions:

– I is unavoidable;
– Lε

I is regular;
– ⇒∗

I is a well quasi-order on Lε
I .

It is worth noticing that the problems we have discussed above, may be consi-
dered with respect to other quasi-orders. In [9], Haussler investigated the relation
�∗I defined as the transitive and reflexive closure of �I where v �I w if

v = v1v2 · · · vn+1,

w = v1a1v2a2 · · · vnanvn+1,

where the ai’s are letters, and a1a2 · · · an ∈ I. In particular, a characterization
of the wqo property of �∗I in terms of subsequence unavoidable sets of words was
given in [9]. In the last part of the paper, we focus our attention on a possible
extension of our main result with respect to �∗I .

2 Preliminaries

The main notions and results concerning quasi-orders and languages are shortly
recalled in this section.

Let A be a finite alphabet and let A∗ be the free monoid generated by A. The
elements of A are usually called letters and those of A∗ words. The identity of
A∗ is denoted ε and called the empty word.

A nonempty word w ∈ A∗ can be written uniquely as a sequence of letters as
w = a1a2 · · · an, with ai ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length
of w and denoted |w|. For all a ∈ A, |w|a denotes the number of occurrences of
the letter a in w. Let w ∈ A∗. The word u ∈ A∗ is a factor of w if there exist
p, q ∈ A∗ such that w = puq. If w = uq, for some q ∈ A∗ (resp. w = pu, for some
p ∈ A∗), then u is called a prefix (resp. a suffix ) of w.

The set of all prefixes (resp. suffixes, factors) of w is denoted Pref(w) (resp.
Suff(w), Fact(w)). A word u is a subsequence of a word v if u = a1a2 · · · an,
v = v1a1v2a2 · · · vnanvn+1 with ai ∈ A, vi ∈ A∗. A subset L of A∗ is called a
language. If L is a language of A∗, then alph(L) is the smallest subset B of A
such that L ⊆ B∗. Moreover, Pref(L) denotes the set of prefixes of all words of
L. A language of A∗ is called recognizable if it is accepted by a finite automaton
or, equivalently, via the well known characterization of Myhill and Nerode, if
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it is saturated by a finite index congruence of A∗. The family of recognizable
languages of A∗ is denoted Rec(A∗). A binary relation ≤ on a set S is a quasi-
order (qo) if ≤ is reflexive and transitive. Moreover, if ≤ is symmetric, then ≤
is an equivalence relation. The meet ≤ ∩≤−1 is an equivalence relation ∼ and
the quotient of S by ∼ is a poset (partially ordered set). A quasi-order ≤ in a
semigroup S is monotone on the right (resp. on the left) if for all x1, x2, y ∈ S

x1 ≤ x2 implies x1y ≤ x2y (resp. yx1 ≤ yx2).

A quasi-order is monotone if it is monotone on the right and on the left.
An element s ∈ X ⊆ S is minimal in X with respect to ≤ if, for every x ∈ X,

x ≤ s implies x ∼ s. For s, t ∈ S if s ≤ t and s is not equivalent to t mod ∼,
then we set s < t.

A quasi-order in S is called a well quasi-order (wqo) if every non-empty subset
X of S has at least one minimal element but no more than a finite number of
(non-equivalent) minimal elements. We say that a set S is well quasi-ordered
(wqo) by ≤, if ≤ is a well quasi-order on S.

There exist several conditions which characterize the concept of well quasi-
order and that can be assumed as equivalent definitions (cf. [6]).

Theorem 1. Let S be a set quasi-ordered by ≤. The following conditions are
equivalent:

i. ≤ is a well quasi-order;
ii. every infinite sequence of elements of S has an infinite ascending subse-

quence;
iii. if s1, s2, . . . , sn, . . . is an infinite sequence of elements of S, then there exist

integers i, j such that i < j and si ≤ sj;
iv. there exists neither an infinite strictly descending sequence in S (i.e. ≤ is

well founded), nor an infinity of mutually incomparable elements of S.

A partial order satisfying the wqo property is also called a well partial order.
The quasi-orders considered in this paper are actually partial orders. However,
according to the current terminology, we refer to them as quasi-orders.

Let σ = {si}i≥1 be an infinite sequence of elements of S. Then σ is called
good if it satisfies condition (iii) of Theorem 1 and it is called bad otherwise,
that is, for all integers i, j such that i < j, si �≤ sj .

It is worth noting that, by condition (iii) above, a useful technique to prove
that ≤ is a wqo on S is to prove that no bad sequence exists in S.

If ρ and σ are two relations on sets S and T respectively, then the direct
product ρ⊗ σ is the relation on S × T defined as

(a, b) ρ⊗ σ (c, d) ⇐⇒ a ρ c and b σ d.

The following lemma is well known (see [6], Ch. 6).

Lemma 1. The following conditions hold:

i. Every subset of a wqo set is wqo.
ii. If S and T are wqo by ≤S and ≤T respectively, then S×T is wqo by ≤S ⊗ ≤T .
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Following [6], we recall that a rewriting system, or semi-Thue system on an
alphabet A is a pair (A, π) where π is a binary relation on A∗. Any pair of
words (p, q) ∈ π is called a production and denoted by p → q. Let us denote by
⇒π the derivation relation of π, that is, for u, v ∈ A∗, u ⇒π v if

∃ (p, q) ∈ π and ∃ h, k ∈ A∗ such that u = hpk, v = hqk.

The derivation relation ⇒∗
π is the transitive and reflexive closure of ⇒π. One

easily verifies that ⇒∗
π is a monotone quasi-order on A∗.

A semi-Thue system is called unitary if π is a finite set of productions of the
kind

ε → u, u ∈ I, I ⊆ A+.

Such a system, also called unitary grammar, is then determined by the finite
set I ⊆ A+. Its derivation relation and its transitive and reflexive closure are
denoted by ⇒I (or, simply, ⇒) and ⇒∗

I (or, simply, ⇒∗), respectively. We set
Lε

I = {u ∈ A∗ | ε ⇒∗ u}.
Unitary grammars have been introduced in [7], where the following theorem

is proved.

Theorem 2. Let I be a finite set of A+ and assume that A = alph(I). The
following conditions are equivalent:

i. the derivation relation ⇒∗
I is a wqo on A∗;

ii. the set I is unavoidable;
iii. the language Lε

I is regular.

3 Main Result

The main result of this section will be stated in Corollary 4 which is an improve-
ment of Theorem 2 where Condition i. is substituted by the weaker condition
that Lε

I is well quasi ordered by the relation ⇒∗
I . In order to achieve this result

we have first to prove the following non-trivial theorem.

Theorem 3. Let I be a finite set of words. If I is avoidable then ⇒∗
I is not a

wqo on the language Lε
I .

The proof of Theorem 3 is divided into the following three cases.

3.1 First Case

We suppose that Card(I) = 1 so that I = {w}. Set A = alph(I). Let us first
observe that Card(A) ≥ 2. Indeed, if Card(A) = 1 then w = ak, k ≥ 1 so that
I is an unavoidable set of A∗ which contradicts the assumption on the set I.
Hence, w may be factorized as w = w′abk, where a, b ∈ A, a �= b, w′ ∈ A∗ and
k > 0.

Now we construct the bad sequence of Lε
I . For any n > 0, let xn be the word

defined as
xn = (w′a)n−1w(w′a)bkn.
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The following lemma states some useful properties of the words of the se-
quence {xn}.

Lemma 2. The following conditions hold:
i. For any n > 0, xn ∈ Lε

I .
ii. For any n > 0, |xn| = (n+ 1)|w|.

Corollary 1. Let n,m be positive integers. If xn ⇒�
I xn+m then � = m.

Proof. By condition (ii) of the previous lemma, |xn+m| = (n + m + 1)|w| =
|xn| + m|w|, which implies that the length of the derivation xn ⇒�

I xn+m is
� = m. ��

Lemma 3. Let y be a word and let n, � be positive integers. If xn ⇒�
I y then

i. y = y′bh where y′ /∈ A∗b and 1 ≤ h ≤ k(n+ �);
ii. if h = k(n+ �) then y = (w′a)n−1w(w′a)�+1bh.

Proposition 1. ⇒∗
I is not a wqo on Lε

I .

Proof. The proof is by contradiction. Suppose that ⇒∗
I is a wqo on Lε

I . Therefore,
every sequence of words of Lε

I is good. Hence there exist positive integers n, �
such that xn ⇒∗

I xn+�. By Corollary 1, one has

xn ⇒�
I y (1)

with y = xn+�. By the fact that bk(n+�) is a suffix of y, condition (ii) of Lemma
3 yields

y = xn+� = (w′a)n+�−1w(w′a)bk(n+�) = (w′a)n−1w(w′a)�+1bk(n+�). (2)

Finally Equality (2) yields

(w′a)�w = (w′a)�w′abk = w(w′a)�,

so that a = b which is a contradiction. Hence ⇒∗
I is not a wqo on Lε

I . ��

3.2 Second Case

We suppose that Card(I) ≥ 2 and, for every letter a of alph(I), there exists a
word of I which begins with a. Set alph(I) = A.

Lemma 4. Let I be a finite avoidable set of A+. Then there exists a word w ∈
A+ such that, for any n ≥ 0, Fact(wn) ∩ I = ∅.

Proof. Let X = A∗ \ A∗IA∗. Since I is finite, X ∈ Rec(A∗). Moreover, since I
is avoidable in A∗, X is infinite. By the latter two conditions and by using the
well known pumping lemma, one has that there exists a word v = fwg ∈ X with
f, g, w ∈ A∗ such that w �= ε and, for any n ≥ 0, fwng ∈ X. Since X is closed
by factors, we have that, for any n ≥ 0, wn ∈ X and, thus, Fact(wn)∩I = ∅. ��
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From now on, w denotes the word defined in the statement of Lemma 4.

Lemma 5. Let a ∈ A such that w /∈ aA∗. Then there exist words ax, ay ∈ Lε
I

such that x /∈ Suff(y) and |x| < |y|.

Proof. First suppose that there exists a word u of I of period at least two. Hence
u = u′cdk with u′ ∈ A∗, c, d ∈ A, c �= d and k > 0.Then ε ⇒2

I (u′c)2d2k. Let
x = avu and y = av(u′b)2a2k with av ∈ I. Thus, x and y satisfy the claim.

If every word of I has period 1, then there exist words ai, bj ∈ I, a �= b.
Hence take x = ai and y = aibj . ��

Now it is convenient to notice that, by hypothesis, for every a ∈ A, I∩aA∗ �=
∅. Hence there exists a word z ∈ A+ such that ε ⇒l

I wz with l > 0. Therefore
the sequence of words {zn} is such that

∀ n ≥ 1, ε ⇒ln
I wnzn. (3)

Let us denote {zn} a sequence of words of A+ such that, for any n > 0,
condition (3) holds if one replaces zn with zn and such that zn is of minimal
length.

Lemma 6. The sequence {|zn|} is not upper bounded.

Proof. By contradiction, suppose that our sequence is upper bounded. Thus
there exists a positive integer M such that, for any n > 0, |zn| < M . For any
n > 0, let ln be the length of the derivation ε ⇒ln

I wnzn. Since, for any n > 0,
Fact(wn)∩I = ∅, then ln < M and, hence, |wn| < MN , where N is the maximal
length of a word of I. The latter inequality is not possible if n > MN . Hence
the sequence {|zn|} is not upper bounded. ��

By possibly replacing the sequence {zn} with one of its subsequence, Lemma
6 yields the following corollary.

Corollary 2. The sequence of words {zn} is such that, for any n,m > 0, |zn|+
|y| < |zn+m| where y is the word defined in Lemma 5.

Now, starting from the words ax, ay, w and those of the sequence {zn} previ-
ously defined, we consider the following two sequences {xn}, {yn} of words: for
any n > 0,

xn = wnaxzn, yn = wnayzn.

The condition that, for any n > 0, xn, yn ∈ Lε
I immediately follows from the

definition of the sequences {xn} and {yn}. The following Lemma is used in the
sequel. Its proof is an ease consequence of the definition of the relation ⇒∗

I .

Lemma 7. Let f, g, v ∈ A∗ and let a ∈ A. If fag ⇒∗
I v then v = f ′ag′ where

f ′, g′ are words of A∗ such that

f ⇒∗
I f

′, g ⇒∗
I g

′, fag ⇒∗
I f

′ag ⇒∗
I f

′ag′ = v.
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Lemma 8. Let n, k be positive integers. If xn ⇒∗
I xn+k then zn+k = z′xzn,

z′ ∈ A∗. Similarly, if yn ⇒∗
I yn+k then zn+k = z′′yzn, z′′ ∈ A∗.

Proof. We deal with the case when wnaxzn ⇒∗
I wn+kaxzn+k, the other case

being completely analogous. By applying Lemma 7 to f = wn and g = xzn one
obtains words f ′, g′ ∈ A∗ such that

1. f ′ag′ = wn+kaxzn+k,
2. wn ⇒∗

I f
′,

3. xzn ⇒∗
I g

′.

First we remark that if f ′ = wn then by (1) w ∈ aA∗ which is not possible
since w does not begin with the letter a. Hence, by (2), wn ⇒+

I f ′. This implies
that there exists at least a word u ∈ I such that u ∈ Fact(f ′). If |f ′| < |wn+k|
then, by condition (1), f ′ ∈ Pref(wn+k) so that u ∈ Fact(wn+k). By Lemma 4
the latter condition is not possible. Hence |f ′| ≥ |wn+k| so that, by condition
(1), f ′ = wn+kζ, where ζ ∈ A∗. Since ε ⇒∗

I w
nzn, the previous condition and

condition (2) yield ε ⇒∗
I wn+kζzn. Hence, by the definition of zn+k, |ζzn| ≥

|zn+k|, so that |wn+kζaxzn| ≥ |wn+kaxzn+k|. Since, by Lemma 7,

wnaxzn ⇒∗
I w

n+kζaxzn ⇒∗
I w

n+kaxzn+k,

the latter condition implies that wn+kζaxzn = wn+kaxzn+k. Hence, by Corollary
2, zn+k = z′xzn, with x′ ∈ A∗. ��

Proposition 2. The relation ⇒∗
I is not a wqo on Lε

I .

Proof. The proof is by contradiction. Set L = Lε
I and denote ≤ the relation ⇒∗

I .
Suppose that L is well quasi ordered by ≤. Then, by Lemma 1, the set L × L
is well quasi ordered by the canonical relation defined by ≤ on L × L. Hence
every sequence of elements of L × L is good with respect to that quasi order.
Now consider the sequence {(xn, yn)}. Hence there exist integers n, k > 0 such
that xn ≤ xn+k and yn ≤ yn+k. By Lemma 8, zn+k = z′xzn = z′′yzn with
z′, z′′ ∈ A∗. On the other hand, by Lemma 5, |x| < |y| and therefore x is a
suffix of y which is a contradiction. ��
Remark 1. The same result of Proposition 2 may be obtained under the assump-
tion that, for every letter a ∈ A, there exists a word of the set I that ends with
a. In this case, the proof is completely analogous.

3.3 Third Case

Now we suppose that the set I has at least two words and it does not satisfy
the hypothesis of the previous case. Set alph(I) = A. Therefore, according to
Remark 1, we assume that there exists a letter c of the set A such that, for
every f ∈ I, f /∈ A∗c. In order to study this case, it is useful to introduce some
preliminary definitions and results. For any f ∈ A∗, we set

νc(f) =
|f |c
|f | .
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We adopt the following conventions. The word u denotes a prefix of a word
of the set I such that νc(u) is maximal. Moreover w denotes a word of the set I
with u ∈ Pref(w) and we set w = uv, v ∈ A∗. We state two lemmas whose proof
is omitted for the sake of brevity.

Lemma 9. The following conditions hold.
i) The word u ends with the letter c and v �= ε.
ii) Let f be a word of I such that, for any g ∈ I, νc(g) ≤ νc(f). Then, for any
g ∈ Lε

I , νc(g) ≤ νc(f). Moreover νc(f) < νc(u).
iii) Let n > 0 and let f be a word of A∗ such that un ⇒∗

I f . Then νc(f) ≤ νc(u).
iv) Let v0, . . . , vi be words of the set Pref(Lε

I). Then νc(v0 · · · vi) ≤ νc(u).

Now it is convenient to notice that, by hypothesis, ε ⇒I w = uv and therefore,
for any n > 0,

ε ⇒n
I u

nvn. (4)

Let us denote {zn} a sequence of words of A+ such that, for any n > 0,
condition (4) holds if one replaces vn with zn and such that zn is of minimal
length.

Lemma 10. The sequence {|zn|} is not upper bounded.

The following result is useful. Its proof is similar to that of Lemma 5.

Lemma 11. Let a ∈ A with a �= c and let H = |w| + 1. Then there exist words
aHx, aHy ∈ Lε

I such that x /∈ Suff(y) and |x| < |y|.

By possibly replacing the sequence {zn} with one of its subsequence, Lemma
10 yields the following corollary.

Corollary 3. The sequence of words {zn} is such that, for any n,m > 0, |zn|+
|y| < |zn+m| where y is the word defined in Lemma 11.

Now, starting from the words aHx, aHy, w = uv and those of the sequence
{zn}, we consider the following two sequences {xn}, {yn} of words: for any n > 0,

xn = unaHxzn, yn = unaHyzn.

The condition that, for any n > 0, xn, yn ∈ Lε
I immediately follows from the

definition of the sequences {xn} and {yn}.

Lemma 12. Let n, k be positive integers. If xn ⇒∗
I xn+k then zn+k = z′xzn,

z′ ∈ A+. Similarly, if yn ⇒∗
I yn+k then zn+k = z′′yzn, z′′ ∈ A+.

Proof. We deal with the case when unaHxzn ⇒∗
I u

n+kaHxzn+k, the other being
completely analogous. By applying Lemma 7 to f = un and g = aH−1xzn one
obtains words f ′, g′ ∈ A∗ such that

1. f ′ag′ = un+kaHxzn+k,
2. un ⇒∗

I f
′,

3. aH−1xzn ⇒∗
I g

′.
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Let us prove that un+k ∈ Pref(f ′). By (1), it suffices to show that |f ′| ≥
|un+k|. By contradiction, suppose that |f ′| < |un+k|. First we notice that in the
derivation process

g = aH−1xzn ⇒∗
I g

′

at least a word of I must be inserted in the prefix aH−1 of g. Indeed, otherwise,
we have g′ = aH−1g′′, g′′ ∈ A∗ and therefore

f ′ag′ = f ′aHg′′ = un+kaHxzn+k.

Since |f ′| < |un+k| and |u| < H we obtain u ∈ A∗a, with a �= c which
contradicts condition (i) of Lemma 9. Therefore, the prefix of g′ of length H − 1
is of the form

p = av1 · · · avi,

where 1 ≤ i ≤ H − 1, v1, . . . , vi ∈ Pref(Lε
I). Again, the equality f ′ag′ =

un+kaHxzn+k and the condition |f ′| < |un+k|, |u| < H yield the existence
of a power uj of u such that j ≤ n+ k and

uj = f ′q,

where q is a proper prefix of p. Set q = av1 · · · av′k. Then, by Lemma 9 – (iv),
we have νc(q) = νc(av1 · · · av′k) < νc(v1 · · · v′k) ≤ νc(u) and by Lemma 9 – (iii)
νc(f ′) ≤ νc(u) whence

νc(u) = νc(uj) = νc(f ′q) < νc(u),

which is a contradiction. Hence |f ′| ≥ |un+k| and thus by (1), f ′ = un+kζ,
ζ ∈ A∗. Therefore we have f = un ⇒+

I f ′ = un+kζ. On the other hand, we have
ε ⇒∗

I u
nzn which thus gives

ε ⇒∗
I u

n+kζzn.

By the definition of zn+k, we have |ζzn| ≥ |zn+k| and thus |un+kζaxzn| ≥
|un+kaxzn+k|. Now, by Lemma 7,

fag = unaxzn ⇒+
I f ′ag = un+kζaxzn ⇒∗

I u
n+kaxzn+k = f ′ag′,

which gives un+kζaxzn = un+kaxzn+k. By Corollary 3, |xzn| < |zn+k| which
gives zn+k = z′xzn, with z′ ∈ A+. ��

The proof of the following proposition follows verbatim the argument of that
of Proposition 2.

Proposition 3. The relation ⇒∗
I is not a wqo on Lε

I .

By Theorem 3, we have that ⇒∗
I is a well quasi-order on A∗ if and only if

⇒∗
I is a well quasi-order on Lε

I . Hence Theorem 2 gives the following corollary.

Corollary 4. Let I be a finite set of words over the alphabet A. Then the fol-
lowing conditions are equivalent:
– I is unavoidable;
– Lε

I is regular;
– ⇒∗

I is a well quasi-order on Lε
I .
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4 Open Problems and Perspectives

As announced in the introduction of this paper, one can consider a possible
extension of the previous results with respect to other significant quasi orders
and, in particular, in the case of the relation �∗I we now introduce. Let I be a
finite subset of A+. Then we denote by �I the binary relation of A∗ defined as:
for every u, v ∈ A∗, u �I v if

u = u1u2 · · ·un+1,

v = u1a1u2a2 · · ·unanun+1,

with ui ∈ A∗, ai ∈ A, and a1 · · · an ∈ I.
The relation �∗I is the transitive and reflexive closure of �I . One easily verifies

that �∗I is a monotone quasi-order on A∗. Moreover Lε
�I

denotes the set of all
words derived from the empty word by applying �∗I , that is

Lε
�I

= {u ∈ A∗ | ε �∗I u}.

The relation �∗I has been first considered in [9] where the following theorem
has been proved.

Theorem 4. Let I ⊆ A+ and assume that A = alph(I). The following condi-
tions are equivalent:

i. the derivation relation �∗I is a wqo on A∗;
ii. the set I is subsequence unavoidable in A∗, that is there exists a positive

integer k such that any word u ∈ A∗, with |u| ≥ k, contains as a subsequence
a word of I;

iii. the language Lε
�I

is regular.

In [9] it is also proved that I is subsequence unavoidable if and only if, for
every a ∈ A, I∩{a}+ �= ∅. It is also worth noticing that the relationships between
the quasi-orders �∗I and ⇒∗

I have been deeply investigated in [2], [3] where, as a
consequence of a more general result, the following result is proved:

Theorem 5. For any finite set I, �∗I is a wqo on Lε
I .

In this theoretical setting, it is natural to ask whether Theorem 4 may be
extended by replacing condition (i) with the weaker condition that the derivation
relation �∗I is a wqo on Lε

�I
. Unfortunately this is not true as shown by the

following example. Consider the set I = {ab}. It is easily verified that Lε
�I

= Lε
I

and therefore, by a well known construction, Lε
�I

is generated by a context-free
grammar with only one variable. Precisely, Lε

�I
is the language of all semi-

Dyck words over the alphabet {a, b}. By Theorem 5, �∗I is a well quasi order on
Lε
�I

= Lε
I while this language is not regular. This example lead us to raise the

following conjecture.
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Conjecture 1. The following two conditions are equivalent:

1. �∗I is wqo on Lε
�I

;
2. Lε

�I
is context-free.

At the present we are not able to solve this conjecture. However it seems
that a significant step of a possible solution of our problem is the combinatorial
characterization of finite sets I such that Lε

�I
is context-free. In the literature, the

language Lε
�I

is also called the iterated shuffle of I or the shuffle closure of I [13].
Many papers have been devoted to the studying of the shuffle closure of finite
languages (see for instance [13, 14]) but, as far as we know, no characterization
has been given for the context-freeness property of them. Here, we give such a
characterization when I is a singleton. Precisely, we prove.

Theorem 6. Let I = {w}. Then Lε
�I

is context-free if and only if w = akbh

where a and b are distinct letters and h, k are non negative integers.

Proof. (Sketch) Let us prove the necessary condition. Let

I = {w} = {ai1
1 a

i2
2 · · · aik

k },

where k ≥ 3, i1, . . . , ik ≥ 1 and the a′is are letters such that, for every i =
1, . . . , k − 1, ai �= ai+1. By contradiction, suppose that Lε

�I
is context-free. Let

X = {ai1n
1 ai2n

2 · · · aikn
k | n ≥ 1}.

By applying the Pumping Lemma for context-free languages to X, one proves
that X is not context-free. On the other hand, one may prove that

X = Lε
�I

∩ (ai1
1 )∗(ai2

2 )∗ · · · (aik

k )∗.

Since the family of context-free languages is closed under intersection with
regular languages, one has that X is context-free which is a contradiction. This
proves the necessary condition.

Let us now prove the sufficient condition. Let I = {w} = ahbk, where a and
b are distinct letters and h, k are non negative integers. If k = 0 (resp. h = 0),
then Lε

�I
= (ah)∗ (resp. = (bk)∗) and, hence, it is regular. Suppose that h, k > 0.

For any word u over the alphabet {a, b}, one can consider the following integer
parameters

qu
a = |u|a/h, qu

b = |u|b/k, and

ru
a = |u|a mod h, ru

b = |u|b mod k.

Then, one can prove that, for any word w,

w ∈ Lε
�I

if and only if the following condition holds: qw
a = qw

b , rw
a = rw

b = 0 and for any
prefix u of w, either qu

a > qu
b or qu

a = qu
b and ru

b = 0.
By using the characterization above, one may construct a push-down au-

tomaton that accepts Lε
�I

.
��
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Abstract. We formalize the hairpin inverted repeat operation, which
is known in ciliate genetics as an operation on words and languages by
defining HI(w, P ) as the set of all words xαyRαRz where w = xαyαRz
and the pointer α is in P . We extend this concept to language families
which results in families HI(L1, L2). For L1 and L2 being the families
of finite, regular, context-free, context-sensitive or recursively enumer-
able language, respectively, we determine the hierarchy of the families
HI(L1, L2) and compare these families with those of the Chomsky hi-
erarchy. Furthermore, we give some results on the decidability of the
membership problem, emptiness problem and finiteness problem for the
families HI(L1, L2).

1 Introduction and Definitions

DNA molecules can be described as words over the alphabet {A,C,G, T} where
the letters stand for Adenine, Cytosine, Guanine and Thymine or over the al-
phabet of the pairs of the Watson-Crick complementary letters. Thus operations
on DNA structures, genes and chromosomes can be interpreted as operations on
words. They can be extended to operations on languages (as sets of words) and
language families.

For instance, the splicing as a basic recombination operation on DNA mole-
cules has been modelled as a language-theoretic operation by T. Head in [8]. A
splicing rule r can be given as a word r = u1#u2$v1#v2. Its application to two
words x and y is only possible if x = x1u1u2x2 and y = y1v1v2y2 and results in
z = x1u1v2y2. We write

z = Splr(x, y) .

This can be extended to languages and language families by

Spl(L,R) = {z | z = Splr(x, y), x, y ∈ L, r ∈ R} ,
Spl(L1,L2) = {K | K = Spl(L,R), L ∈ L1, R ∈ L2} .

In [10] Gh. Păun has compared the language families Spl(L1,L2), where L1
and L2 are families of the Chomsky hierarchy, with the families of the Chomsky
hierarchy. These results are summarized in [9] and [11], too.

In [14], D. B. Searls introduced formal language-theoretic counterparts of
some large scale rearrangements in DNA molecules, genes and chromosomes

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 151–162, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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as inversion, translocation and duplication. In [5] and [4] the effect of these
operations applied to language families from the Chomsky hierarchy has been
studied.

In the last years the loop direct repeat excision and insertion, the hairpin
inverted repeat operation and the double loop alternating direct repeat excision,
which are well-known operations occurring in the descrambling of ciliates, have
been formulated as language-theoretic operations (see [6]). In order to model
these operation one uses some pointers which determine the places where the
operations can be applied. For the hairpin inverted repeat operation we obtain
the following definition

HI(w) = {xαyRαRz | w = xαyαRz and α is a pointer}

where α, x, y and z are words over some alphabet V and yR denotes the mirror
word obtained from y (i.e., λR = λ for the empty word, xR = x for any letter
x, and (w1w2)R = wR

2 w
R
1 for words w1 and w2). In the paper [1], the authors

generalized this operation to languages by

HI(L) = {xαyRαRz | xαyαRz ∈ L, x, z ∈ V ∗, y ∈ V +, α ∈ V +}

(i.e., HI(L) consist of all words which can be obtained from words of L by the
hairpin inverted repeat operation where any non-empty word can be used as
a pointer). In [1], [2] and [3] the closure of some language families under this
operation has been studied.

In this paper we continue all these investigations. In accordance with molec-
ular biology, where mostly only a finite set of pointers can be recognized, instead
of allowing any word as a pointer, we require that the pointers have to belong
to a certain language P . This leads to the following concepts.

Let V be an alphabet. For w ∈ V +, L ⊆ V + and P ⊆ V +, we set

HI(w,P ) = {xαyRαRz | w = xαyαRz, x, y ∈ V ∗, y ∈ V +, α ∈ P}

and
HI(L,P ) =

⋃
w∈L

HI(w,P ) .

Moreover, we extend the definition to language families L1 and L2 by

HI(L1,L2) = {HI(L,P ) | L ∈ L1, P ∈ L2} .

In this paper we study the language families HI(L1,L2), where L1 and L2
are families of the Chomsky hierarchy or the family of finite languages. We
give some results on the place of these families within the Chomsky hierarchy.
Furthermore, we compare the families HI(L1,L2) with each other and present
some results on the decidability of the membership problem, emptiness problem
and finiteness problem for the families HI(L1,L2).

Let us mention that in [7] the authors studied related families using a modified
concept of hairpin operation and finite sets of pointers (and using methods for
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proofs which differ from our ideas) and that [12] contains statements analogous to
our results for an operation modelling the double loop alternating direct repeat
excision.

Throughout the paper we assume that the reader is familiar with the basic
notions of the theory of formal languages which can be found in [13].

For a language L, alph(L) denotes the smallest alphabet V such that L ⊆ V ∗.
For a word w, sub(w) denotes the set of subwords of w. We extend this notion
to languages by sub(L) = {z | z ∈ sub(w), w ∈ L}.

By FIN , REG, CF , CS and RE we denote the families of all finite, regu-
lar, context-free, context-sensitive and recursively enumerable languages, respec-
tively, and by H we denote the set of these five families.

Given L1,L2 and L in H, we say that L is an optimal (upper) bound for
HI(L1,L2), if HI(L1,L2) ⊆ L and HI(L1,L2) is not contained in any family
L′ ∈ H with L′ ⊆ L.

For a language family L, U(L) denotes the family of unary languages of L.

2 Upper Bounds for Hairpin Families

The following lemma immediately follows from the definitions.

Lemma 1. For any language families L1, L2, L3 and L4 such that L1 ⊆ L2
and L3 ⊆ L4, HI(L1,L3) ⊆ HI(L2,L4). �

By definition, any word belonging to HI(L,P ) for some languages L and P
has the form x1αx2α

Rx3 for some words α, x1, x2, x3. Obviously, there are words
which do not have this structure, e.g. the word abc over {a, b, c}. Thus the finite
language only consisting of abc cannot be in HI(L1,L2) for all language families
L1 and L2. Therefore we have the following result.

Lemma 2. For any two language families X and Y , FIN is not contained in
HI(X,Y ). �

By Lemma 2, we do not have lower estimations L ⊆ HI(L1,L2) with a
language family L which contains the family of finite languages. Especially, we
do not have lower estimations by the families of the Chomsky hierarchy.

We now give some upper estimations.

Theorem 1. HI(FIN,FIN) = HI(FIN,REG) = HI(FIN,CF )
= HI(FIN,CS) = HI(FIN,RE) ⊂ FIN .

Proof. Obviously,
HI(L,P ) =

⋃
w∈P

HI(L, {w}) .

Moreover, if HI(L, {w}) is non-empty for some pointer w, then w has to be
a subword of some word of L, i.e., w ∈ sub(L). Thus we have

HI(L,P ) =
⋃

w∈P∩sub(L)

HI(L, {w}) = HI(L,P ∩ sub(L)) . (1)
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If L is a finite language, then sub(L) and P ∩ sub(L) are finite, too. Thus, by
(1), any language HI(L,P ) with a finite language L belongs to HI(FIN,FIN).
Therefore HI(FIN,X) ⊆ HI(FIN,FIN) for all language families. The oppo-
site inclusions follow from Lemma 1.

In order to finish the proof we now show that HI(FIN,FIN) ⊂ FIN . Let
L and P be two finite languages. We set

m = #(L), n = max{|w| | w ∈ L} and m′ = #(P ) .

By definition, if z = x1αx2α
Rx3 ∈ HI(L,P ), then L contains the word

y = x1αx
R
2 α

Rx3. For any word y ∈ L and any α ∈ P , we have less than n2

possible compositions y = x1αx
R
2 α

Rx3 since we can use at most n positions
where α and αR start. Thus the number of words in HI(L,P ) is bounded by
m ·m′ ·n2, and therefore HI(L,P ) is finite. The inclusion is strict by Lemma 2.

Theorem 2. HI(REG,FIN) ⊂ REG.

Proof. Let L be a regular language which is accepted by the deterministic finite
automaton A = (V,Z, z0, F, δ). Further let P = {w1, w2, . . . , wn} be a finite set
where wi = ai,1ai,2 . . . ai,ri

with ai,j ∈ V for 1 ≤ i ≤ n, 1 ≤ j ≤ ri. Then we
consider the nondeterministic finite automaton

A′ = (V, {u1, u2, . . . , u6}×K ×Z × (Z ∪ {q})× (Z ∪ {q}), (u1, t1, z0, q, q), F ′, δ′)

where q, u1, u2, u3, u4, u5 are new symbols,

K = {zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ri} ∪ {t1, t2} ,
F ′ = {(u6, t2, z, z, z

′) | z ∈ Z, z′ ∈ F}

and δ′ is defined as follows:

(u1, t1, δ(z, a), q, q) ∈ δ′((u1, t1, z, q, q), a) for z ∈ Z, a ∈ V

(starting in the initial state of A and reading v1 we obtain (u1, t1, δ(z0, v1), q, q)),

(u2, zi,1, δ(z, ai,1), q, q) ∈ δ′((u1, t1, z, q, q), ai,1) for z ∈ Z,
(u2, zi,j , δ(z, ai,j), q, q) ∈ δ′((u2, zi,j−1, z, q, q), ai,j) for z ∈ Z, 1 ≤ j ≤ ri − 1,
(u3, zi,ri

, δ(z, ai,ri
), z′, z′) ∈ δ′((u2, zi,ri−1, z, q, q), ai,ri

) for z ∈ Z, z′ ∈ Z

(we check whether v1 is followed by a word wi ∈ P ; in the third component we
continue the simulation of A; finally we get (u3, zi,ri

, δ(z0, v1wi), z′, z′) for some
z′ ∈ Z),

(u4, zi,ri
, z, z2, z

′) ∈ δ′((u3, zi,ri
, z, z1, z

′), a) for z, z1 ∈ Z, z1 = δ(z2, a),
(u4, zi,ri , z, z2, z

′) ∈ δ′((u4, zi,ri , z, z1, z
′), a) for z, z1 ∈ Z, z1 = δ(z2, a)

(we remember zi,ri , z and z′ and simulate A nondeterministically backwards in
the fourth component; thus after reading the non-empty word v2 which follows
u1wi we obtain the state (u4, zi,ri

, δ(z0, v1wi), z′′, z′) with δ(z′′, vR
2 ) = z′ ),
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(u5, zi,ri−1, z, z, δ(z′, ai,ri
)) ∈ δ′((u4, zi,ri

, z, z, z′), ai,ri
) for z ∈ Z,

(u5, zi,j−1, z, z, δ(z′′, ai,j)) ∈ δ′((u5, zi,j , z, z, z
′′), ai,j) for z, z′′ ∈ Z, 1 < j < ri,

(u6, t2, z, z, δ(z′′, ai,1) ∈ δ′((u5, zi,1, z, z, z
′′), ai,1) for z, z′′ ∈ Z

(we check whether v1wiv2 is followed by wR
i ; this process can only be started if

z = δ(z0, v1wi) and z′ = δ(z, vR
2 ); during this phase we simulate A in the fifth

component; t2 remembers that the check was successful; finishing this phase we
get the state (u6, t2, δ(z0, u1wi), δ(z0, u1wi), δ(z′, wR

i ) ),

(u6, t2, z, z, δ(z′′, a)) ∈ δ′((u6, t2, z, z, z
′′), a) for z′′ ∈ Z, a ∈ V

(we obtain (u6, t2, δ(z0, v1wi), δ(z0, v1wi), δ(z′, wR
i v3)) if we read the remaining

part v3 of the input word).
By these explanations and the definition of F , the language accepted by A′

consists of all words of the form v1wiv2w
R
i v3 with v1, v3 ∈ V ∗, v2 ∈ V +, wi ∈ P

and
δ(z0, v1wiv

R
2 w

R
i v3) = δ(z, vR

2 w
R
i v3) = δ(z′, wR

i v3) ∈ F ,

i.e., v1wiv
R
2 w

R
i v3 ∈ L. Hence A′ accepts HI(L,R) which proves the regularity

of HI(L,R).
The strictness of the inclusion follows by Lemma 2.

We mention that the upper bound given in Theorem 2 is optimal with respect
to H since HI(REG,FIN) contains the infinite language

{canc | n ≥ 1} = HI({canc | n ≥ 1}, {c}) .

Theorem 3. HI(REG,REG) ⊂ CF .

Proof. The proof can be given analogous to that of Theorem 2 using an push-
down automaton instead of the finite automaton and the fact that we can store
the reversal of a word on the pushdown tape.

The following result shows that the upper bound given in Theorem 3 is also
optimal.

Lemma 3. HI(REG,REG) contains a non-regular language.

Proof. Let V = {a, b, c}. We set

L = {bancamcapb | n,m, p ≥ 1} and P = {banc | n ≥ 1} .

Then

HI(L,P ) = {bancamcanb | n,m ≥ 1} ∈ HI(REG,REG) .

Using closure properties of REG it is easy to prove that HI(L,P ) is not regular.



156 J. Dassow

Theorem 4. HI(CS,CS) ⊂ CS.

Proof. Let L and P be two context-sensitive languages, and let AL and AP be the
linearly bounded automata accepting L and P , respectively. We now construct
the Turing machine A which is able to perform the following steps. A divides the
input word x into five parts x′1x2x

′
3x4x

′
5 by priming the original letters of the

subwords x1, x3 and x5. A copies the subword x2 which results in x′1x2x
′
3x4x

′
5$x2

(where $ is a marker) and checks by a simulation of AP on x2 whether or not x2
belongs to P . If the answer is negative, then A rejects x. Otherwise A deletes
the marker and the word obtained from x2 which gives x′1x2x

′
3x4x

′
5, again. A

copies x2 and x4 which results in x′1x2x
′
3x4x

′
5$x2$x4 and checks whether x2 = xR

4
holds. If the answer is negative, then A rejects the input. Otherwise A deletes
all letters besides x′1x2x

′
3x4x

′
5. A transforms x′1x2x

′
3x4x

′
5 into x1x2x

R
3 x4x5 and

checks by a simulation of AL whether or not x1x2x
R
3 x4x5 ∈ L. If the answer is

negative, then A rejects, otherwise A accepts the input. Obviously, A accepts
HI(L,P ).

It is easy to see that the space complexity function of A is linearly bounded.
Therefore HI(L,P ) ∈ CS.

The strictness follows by Lemma 2, again.

By Lemma 1, we obtain immediately the following consequences from
Theorem 4.

Corollary 1.
i) HI(REG,CF ) ⊆ HI(REG,CS) ⊂ CS.
ii) HI(CF,FIN) ⊆ HI(CF,REG) ⊆ HI(CF,CF ) ⊆ HI(CF,CS) ⊂ CS.
iii) HI(CS,FIN) ⊆ HI(CS,REG) ⊆ HI(CS,CF ) ⊂ CS. �

We now show that we cannot improve the relations of Theorem 4 and Corol-
lary 1 within the families of the Chomsky hierarchy, i.e., we show that the family
of context-free languages is not an upper bound. To prove this it is sufficient to
show that the smallest families HI(REG,CF ) and HI(CF,FIN) occurring in
Corollary 1 contain non-context-free languages.

Lemma 4.
i) HI(CF,FIN) contains a non-context-free language.
ii) HI(REG,CF ) contains a non-context-free language.

Proof. i) Let V = {a, b, c}. We set

L = {xcxRc | x ∈ {a, b}+} and P = {c} .

Then
HI(L,P ) = {xcxc | x ∈ {a, b}+} ∈ HI(CF,FIN)

is not context-free as easily can be shown.
ii) can be shown by an analogous proof.



A Ciliate Bio-operation and Language Families 157

Theorem 5. HI(RE,RE) ⊂ RE.

Proof. The proof follows by the construction given in the proof of Theorem 4.

Corollary 2.
i) HI(REG,RE) ⊆ HI(CF,RE) ⊆ HI(CS,RE) ⊂ RE.
ii) HI(RE,FIN) ⊆ HI(RE,REG) ⊆ HI(RE,CF ) ⊆ HI(RE,CS) ⊂
RE. �

We now present two lemmas which imply that the bounds given in Corollaries
2 are optimal, too. Furthermore, these lemmas show the optimality of the given
bounds (for HI(L1,L2) and HI(L2,L′1) where L1 ∈ H, L2 ∈ H, L2 ∈ {CS,RE},
L1 ⊆ L2, L1 �= FIN and L′1 ⊆ L2) within language families satisfying certain
(weak) closure properties.

Lemma 5. Let L1 and L2 be two language families such that REG ⊆ L1, L2 is
closed under concatenation with letters and HI(L1,L2) ⊆ L2. Then there is no
language family L closed under non-erasing gsm-mapppings and linear erasings
such that HI(L1,L2) ⊆ L ⊂ L2.

Proof. Assume that HI(L1,L2) ⊆ L ⊂ L2. LetK ⊆ V ∗ be an arbitrary language
of L2. Further let c and d be two additional letters not in V . We define the
languages

L = {cx1dx2dx3c | x1, x3 ∈ V ∗, x2 ∈ V +} and P = {c}K{d} .

By the suppositions, L ∈ L1 and P ∈ L2 which implies that

HI(L,P ) = {cx1dx
R
2 dx

R
1 c | x1 ∈ K, x2 ∈ V +} ∈ HI(L1,L2) ⊆ L .

By the closure of L under non-erasing gsm mappings and linear erasings, we
get

{cx1d(x′2)
R)d(x′1)

Rc | x1 ∈ K, x2 ∈ V +} ∈ L
(x′ ∈ (V ′)∗ denotes a primed version of the word x ∈ V ∗) and then K ∈ L. Thus
L2 ⊆ L in contrast to our assumption.

Analogously, one can show the following statement.

Lemma 6. Let L1 and L2 be two language families such that L1 is closed under
reversal and concatenation with letters, L2 contains a language consisting of one
letter only and HI(L1,L2) ⊆ L1. Then there is no language family L closed
under quotients by letters such that HI(L1,L2) ⊆ L ⊂ L1. �

3 Comparison of the Hairpin Families

Let L1 and L2 be language families with L1 ⊂ L2. By Lemma 1, we have the
inclusions HI(L1,L) ⊆ HI(L2,L) and HI(L,L1) ⊆ HI(L,L2) for any language
family L. In this section we study the strictness of these inclusions.
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Lemma 7. Let L1 and L2 are language families which are closed under union
with finite sets and intersections with regular sets and satisfy L1 ⊂ L2 and
U(L1) ⊂ U(L2). Then HI(L1,L) ⊂ HI(L2,L) for any language family L which
contains a language consisting of one letter only and is closed under intersection
with regular sets.

Proof. The inclusion HI(L1,L) ⊆ HI(L2,L) holds by Lemma 1. We now prove
its strictness.

Let L ∈ U(L2)\U(L1) for some language L ⊆ {a}∗. By the closure properties
supposed, L′ = L ∩ {an | n ≥ 3} is in L2 \ L1. Moreover, L′ = HI(L, {a}) ∈
HI(L2,L).

Assume that L′ ∈ HI(L1,L). Then L′ = HI(L′′, P ) for some L′′ ∈ L1 and
some P ∈ L. By the closure under intersections by regular sets, we can assume
that P and L′′ are subsets of {a}+. This implies HI(L′′, P ) = L′′. Thus L′′ = L′

in contrast to the fact L′ /∈ L1 shown above.

Theorem 6. The following diagram holds: if two families are connected by a
(double) arrow, then the upper or right family includes (strictly) the lower or
left family; the double bars in the first column denote equality.

HI(FIN, RE) =⇒ HI(REG, RE) =⇒ HI(CF, RE) =⇒ HI(CS, RE) =⇒ HI(RE, RE)

|| ⇑ ⇑ ⇑ ↑
HI(FIN, CS) =⇒ HI(REG, CS) =⇒ HI(CF, CS) =⇒ HI(CS, CS) =⇒ HI(RE, CS)

|| ⇑ ⇑ ⇑ ↑
HI(FIN, CF ) =⇒ HI(REG, CF ) =⇒ HI(CF, CF ) =⇒ HI(CS, CF ) =⇒ HI(RE, CF )

|| ⇑ ⇑ ⇑ ↑
HI(FIN, REG) ⇒ HI(REG, REG) ⇒ HI(CF, REG) ⇒ HI(CS, REG) ⇒ HI(RE, REG)

|| ⇑ ⇑ ⇑ ↑
HI(FIN, FIN) ⇒ HI(REG, FIN) ⇒ HI(CF, FIN) ⇒ HI(CS, FIN) ⇒ HI(RE, FIN)

Proof. The inclusions follow by Lemma 1 and the equalities by Lemma 1. We do
not prove all strictnesses of inclusions. We only present a proof for some cases;
the remaining relations can be proved by analogous considerations.

i) HI(REG,X) ⊂ HI(CF,X) for X ∈ {FIN,REG,CF,CS,RE}
By Lemma 1, we are done if there is a language U in HI(CF,FIN) which

is not contained in the family HI(REG,RE).
Let L = {cad}{arbr | r ≥ 1}{dac} and P = {cad}, then

U = HI(L,P ) = {cad}{brar | r ≥ 1}{dac} ∈ HI(CF,FIN) .

Let us assume that U ∈ HI(REG,RE), i.e., U = HI(K,Q) for some regular
language K and some recursively enumerable language Q. Q can only contain
words α such that w = xαyαRz ∈ U . This implies

Q ⊆ {cad, ad, ca} ∪ {an | n ∈ I1} ∪ {bm | m ∈ I2}

where I1 and I2 are some sets of positive integers.
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If the pointer α is cad, then x = z = λ and y = brar for some r. Then
cadarbrdac ∈ K. The same situation holds if the pointer is ca or ad. If α = an

or α = bm, then w = xαyαRz = xαyRαRz, i.e., w ∈ K. Thus we have

K ⊆ {cadarbrdac | r ≥ 1} ∪ {cadbrardac | r ≥ 1} .
Moreover, K1 = K ∩ {cadarbsdac | r ≥ 1, s ≥ 1} or K2 = K ∩ {cadbrasdac |

r ≥ 1, s ≥ 1} are regular languages and at least one of them has to be infinite.
Assume that K1 is infinite (the other case can be handled analogously). Then
K1 = {cadarbrdac | r ∈ I} is regular, where I is an infinite set of positive
integers. Using the pumping lemma it is easy to prove a contradiction.

ii) HI(X,CS) ⊂ HI(X,RE) for X ∈ {REG,CF,CS}.

Let P ′ ⊂ {a}+ be a non-recursive language and P = {c}P ′{d}. Further we
consider the regular language L = {c}{a}+{dad}{a}+{c}. Then

U = HI(L,P ) = {candadanc | an ∈ P ′} ∈ HI(REG,RE) .

By Theorem 1, U ∈ HI(X,RE).
Let us assume that U ∈ HI(X,CS). By Lemma 4, U ∈ CS. Then the lan-

guage U ′ = {a2n+5 | an ∈ P ′} is context-sensitive. Let A be the following algo-
rithm working on input n (or an). We construct candadanc and decide whether or
not candadanc ∈ U . If the answer is negative, then A says ”no”, too. Otherwise,
A answers ”yes”. Obviously, A decides whether or not an ∈ P ′. This contradicts
the choice of P ′ as a non-recursive language. Therefore U /∈ HI(X,CS).

iii) HI(CF,FIN) ⊂ HI(CF,REG).

Let L = {cardardakc | r ≥ 1, k ≥ 1} and P = {c}{a}+{d}. Then

U = HI(L,P ) = {candandanc | n ≥ 1} ∈ HI(CF,REG) .

We now prove that U /∈ HI(CF,FIN). Assume the contrary. Then U =
HI(K,Q) for some context-free language K and some finite set Q. Moreover,
let

K ′ = K ∩ {c}{a}+{d}{a}+{d}{a}+{c} .
Then K ′ is a context-free language. Moreover, by the structure of words in U ,

it is easy to see that HI(K ′, Q) = HI(K,Q). Now letm be the maximal length of
words in Q, m′ the constant of the pumping lemma by Bar-Hillel/Perles/Shamir
forK ′ and n = max{m,m′}. We consider the word z = candandanc ∈ U . Assume
that car ∈ Q for some r ≤ n−1 and z = HI(z′, car) for some z′ ∈ K ′. We obtain
z′ = z. Let z = z1z2z3z4z5 be the decomposition of z such that z1zi

2z3z
i
4z5 ∈ K ′

for any i ≥ 0. Obviously, #c(z2) = #d(z2) = #c(z4) = #d(z4) = 0. Thus z2 = as

and z4 = at with s+t > 0. Then z1zi
2z3z

i
4z5 is obtained by increasing the number

of occurrences of a in at most two blocks of a’s. Assume that the increase occurs
in the first two blocks (the other cases can be handled analogously). Then we
get can+sdan+tdanc ∈ K ′. Using the pointer car we obtain can+sdan+tdanc ∈
HI(K ′, Q) = U in contrast to the structure of words in U . Analogously, we can
derive a contradiction for the other possible cases for words in Q.
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4 Decidability Results for Hairpin Families

Throughout this section we assume that a language L ∈ HI(L1,L2) is given by
two devices A1 and A2 which describe languages L(A1) ∈ L1 and L(A2) ∈ L2,
respectively, such that L = HI(L(A1), L(A2)). The device can be a grammar
generating a language or an automaton accepting the language or a (regular)
expression. Since there are algorithms to transform a generating device into an
accepting device and vice versa, the concrete type of the describing device is not
of importance.

We say that a property E is (un)decidable for HI(L1,L2) if, given two devices
A1 and A2 describing languages L(A1) ∈ L1 and L(A2) ∈ L2, it is (un)decidable
whether or not HI(L(A1), L(A2)) has the property E.

The following theorem states the (un)decidabilities of the membership prob-
lem, emptiness problem and finiteness problem for language families HI(L1,L2).

Theorem 7. The following table holds. (The table has to be read as follows:
In the meet of the column associated with L1 and the row associated with L2
we give a triple (a, b, c), where a, b and c are the status of decidability of the
membership problem, emptiness problem and finiteness problem for HI(L1,L2),
respectively. The decidability and undecidability of a problem are denoted by +
and −, respectively; a question mark denotes that the status of decidability is
presently unknown; T denotes the case that the property holds for all languages
of the family.)

FIN REG CF CS RE
RE (?, ?, T ) (−,−,−) (−,−,−) (−,−,−) (−,−,−)
CS (+,+, T ) (+,−,−) (+,−,−) (+,−,−) (−,−,−)
CF (+,+, T ) (+, ?, ?) (+,−,−) (+,−,−) (−,−,−)
REG (+,+, T ) (+,+,+) (+,−,−) (+,−,−) (−,−,−)
FIN (+,+, T ) (+,+,+) (+,+,+) (+,−,−) (−,−,−)

Proof. We do not prove all relations. We only present the proof for some cases;
the remaining relations can be proved by analogous considerations.

i) The membership problem is undecidable for HI(REG,RE).
Let A2 be an arbitrary device for a recursively enumerable language and

V = alph(L(A2)). Let c, d and e be symbols not contained in V . We construct
a device A′2 describing {c}L(A2){d}. Further let A1 be a device which describes
the regular language L(A1) = {c}V ∗{ded}V ∗{c}. Then

{cwdedwRc | w ∈ L(A2)} = HI(L(A1), L(A′2)) ∈ HI(REG,RE) .

Let us assume that there is an algorithm to decide the membership problem
for languages in HI(REG,RE). Then, given w, we can construct cwdedwRc
and decide whether or not cwdedwRc ∈ HI(L(A1), L(A′2)). Since the answer is
positive if and only if w ∈ L(A2) holds, we can decide whether or not w ∈ L(A2)
for an arbitrary device A2 which is impossible.

ii) The emptiness problem is decidable for HI(FIN,CS).
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GivenA1 andA2 describing/generating the finite language L1 and the context-
sensitive language L2, we can construct the finite language L2∩sub(L1) and then
the finite language HI(L1, L2) = HI(L1, L2∩sub(L1)) (see the proof of Theorem
1) whose emptiness is decidable.

iii) The emptiness problem is undecidable for HI(REG,CS).
We take the construction of part i) starting with an arbitrary device A2

describing a context-sensitive language. Then we have

{cwdedwRc | w ∈ L(A2)} = HI(L(A1), L(A′2)) ∈ HI(REG,CS) .

Obviously, HI(L(A1), L(A′2)) �= ∅ if and only if L(A2) �= ∅. The undecid-
ability of the emptiness of L(A2) implies the undecidability of the emptiness of
HI(L(A1), L(A′2)).

iv) The emptiness problem is undecidable for HI(CF,REG).
Let P = {(u1, v1), (u2, v2), . . . , (un, vn)} be an instance of the Post Corre-

spondence Problem over some alphabet V . Let c, d and e be letters not contained
in V . We construct the context-free grammar

G1 = ({S,A}, V ∪ {c, d, e}, P, S)

with
P = {S → cAc,A → ded} ∪ {A → uiAv

R
i | 1 ≤ i ≤ n} ,

which generates the language

L(G1) = {cui1ui2 . . . uik
dedvR

ik
vR

ik−1
. . . vR

i1c | 1 ≤ ij ≤ n, 1 ≤ j ≤ k} ,

and a regular grammar G2 with L(G2) = {c}V +{d}. Then

HI(L(G1), L(G2)) = {cui1ui2 . . . uik
dedvR

ik
vR

ik−1
. . . vR

i1c |
1 ≤ ij ≤ n, 1 ≤ j ≤ k, ui1ui2 . . . uik

= vi1vi2 . . . vik
} .

Hence HI(L(G1), L(G2)) is non-empty if and only if P has a solution. Thus
the undecidability of the existence of a solution for a Post Correspondence Prob-
lem implies the undecidability of the emptiness of HI(L(A1), L(A′2)).

We have left open the status of the membership problem and emptiness prob-
lem for the family HI(FIN,RE) and of the emptiness problem and finiteness
problem for HI(REG,CF ).
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Abstract. We introduce semantic shuffle on trajectories (SST) and se-
mantic deletion along trajectories (SDT). These operations generalize
the notion of shuffle on trajectories, but add sufficient power to encom-
pass various formal language operations used in applied areas. However,
the added power given to SST and SDT does not destroy many desirable
properties of shuffle on trajectories, especially with respect to solving
language equations involving SST. We also investigate closure properties
and decidability questions related to SST and SDT.

1 Introduction and Motivation

Shuffle on trajectories, introduced by Mateescu et al. [24], is a powerful tool for
generalizing operations on formal languages which act by inserting the letters
of one word into another. There has been much research into this formalism,
see, e.g., Harju et al. [13], Mateescu and Salomaa [26], Mateescu et al. [27]
and others. Mateescu [23] also introduced the related concept of splicing along
routes, which is an extension of shuffle on trajectories designed to model splicing
operations on DNA. Recently, both the author [6] and Kari and Sośık [18] have
independently introduced the notion of deletion along trajectories, which is an
analogue of shuffle on trajectories for operations which delete letters of one word
from another. This has led to even more research on trajectory-based operations
[7–10, 15, 16]. Kari et al. [17] also introduce the notion of substitution and
difference on trajectories, related concepts which have applications to modelling
noisy channels.

In the paper which introduced shuffle on trajectories, Mateescu et al. make
a distinction between syntactic and semantic operations on words:

[Shuffle on trajectories is] based on syntactic constraints on the shuf-
fle operations. The constraints are referred to as syntactic constraints
since they do not concern properties of the words that are shuffled, or
properties of the letters that occur in these words.
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Instead, the constraints involve the general strategy to switch from one
word to another word. Once such a strategy is defined, the structure of
the words that are shuffled does not play any role.
However, constraints that take into consideration the inner structure of
the words that are shuffled together are referred to as semantic con-
straints. [24, p. 2].

In this paper, we introduce a semantic variant of shuffle on trajectories, and
investigate the properties of the operation. We naturally call the semantic vari-
ant semantic shuffle on trajectories (SST). It is a proper extension of the notion
of shuffle on trajectories, and can simulate many more operations than shuffle on
trajectories, especially operations of interest in applied areas of formal language
theory. We also introduce the corresponding notion for deletion on trajectories,
which we call semantic deletion on trajectories (SDT). The advantages of SST
and SDT are that they preserves many of the desirable properties of the usual,
syntactic shuffle on trajectories, while being capable of simulating more opera-
tions of interest. However, SST and SDT have some fundamental differences from
the syntactic case. For instance, the problem of determining whether two sets
of trajectories define the same operation is trivial in the syntactic case. In the
semantic case, we employ the theory of trace languages to solve this equivalence
problem.

We show how SST and SDT can be used to simulate operations in bio-
informatics and DNA computing. These operations include synchronized inser-
tion and synchronized deletion, introduced by Daley et al. [2, 3] in the study of
the DNA operations of certain ciliates, and contextual insertion and deletion,
introduced by Kari and Thierrin [19].

We further demonstrate the power of SST and SDT by giving many examples
of other semantic operations simulated by these formalisms, including operations
in concurrency theory, formal methods of software engineering and discrete event
systems (DES). For example, one of the examples given by Mateescu et al.
[24] of a semantic operation is distributed concatenation, defined by Kudlek and
Mateescu [21, 20]. We observe that SST can simulate distributed concatenation,
as well as other mix operations defined by Kudlek and Mateescu [21]. We can also
simulate Latin product [25], infiltration product [28] and usual set intersection.

The two semantic constructs we introduce are synchronization and content
restriction. Synchronization allows for only one letter to be output for two cor-
responding, identical symbols in the input words. Content restriction allows a
trajectory to specify that a particular letter must appear at a specific point.
This is inspired by bio-informatical operations, where operations occur only in
the context of certain subsequences of the DNA strand.

2 Definitions

Let Σ be a finite set of symbols, called letters. Then Σ∗ is the set of all finite
sequences of letters from Σ, which are called words. The empty word ε is the
empty sequence of letters. The length of a word w = w1w2 · · ·wn ∈ Σ∗, where
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wi ∈ Σ, is n, and is denoted |w|. A language L is any subset of Σ∗. By L, we
mean Σ∗ − L, the complement of L.

A morphism h : Δ∗ → Σ∗ is any function satisfying h(xy) = h(x)h(y) for
all x, y ∈ Δ∗. A substitution h : Δ∗ → 2Σ∗

is any function satisfying h(xy) =
h(x)h(y) for all x, y ∈ Δ∗. If h(a) is regular (resp., finite) for all a ∈ Δ, we say
that h is a regular (resp., finite) substitution. Recall that a morphism h : Δ∗ →
Σ∗ is a weak coding if h(a) ∈ Σ ∪ {ε} for all a ∈ Δ. For additional background
in formal languages and automata theory, please see Yu [30].

Before we define SST, we define the trajectory alphabet. Let Γ = {0, 1, σ}.
For any alphabet Σ, let ΓΣ = Γ ∪ (Γ × Σ). For ease of readability, we denote
[c, a] by

a
c for all a ∈ Σ and c ∈ Γ .

We can now define the SST operation. Let Σ be an alphabet, t ∈ Γ ∗Σ and
x, y ∈ Σ∗. Then the SST of x and y along t, denoted x t y, is defined as follows:
If x = ax′, y = by′ (where a, b ∈ Σ, x′, y′ ∈ Σ∗), and t = ct′, where c ∈ ΓΣ and
t′ ∈ Γ ∗Σ , then

x t y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(x′ t′ y) if c ∈ {0,

a
0},

b(x t′ y′) if c ∈ {1,
b
1},

a(x′ t′ y′) if a = b and c ∈ {σ, a
σ},

∅ otherwise.

If x = ax′, y = ε and t = ct′ then

x t ε =

{
a(x′ t′ ε) if c ∈ {0,

a
0},

∅ otherwise.

If x = ε, y = by′ and t = ct′ then

ε t y =

{
b(ε t′ y′) if c ∈ {1,

b
1},

∅ otherwise.

If x = y = ε, then x t y = ε if t = ε and ∅ otherwise. Finally, if {x, y} �= {ε},
then x ε y = ∅. If x, y ∈ Σ∗ and T ⊆ Γ ∗Σ , then x T y = ∪t∈Tx T y. If
L1, L2 ⊆ Σ∗ and T ⊆ Γ ∗Σ , then L1 T L2 = ∪x∈L1,y∈L2x T y.

Intuitively, we can consider the set of trajectories as consisting of instructions
{0, 1, σ}, as well as an instruction on what letter can be present while that
instruction is performed. The letters of Γ indicate a ‘don’t care’–this represents
our syntactic shuffle on trajectories1. Note that if T ⊆ {0, 1}∗, then L1 T L2 is
the syntactic shuffle on trajectories operation.

We also introduce a corresponding deletion operation. Let Δ = {i, d, σ}. For
any alphabet Σ, let ΔΣ = Δ ∪ (Δ × Σ). If x = ax′, y = by′ (where a, b ∈ Σ),
and t = ct′ (where c ∈ ΔΣ), then

1 Technically, the alphabet Γ is not needed, since we can replace, e.g., 0 with the
expression ∪a∈Σ

a

0, however, its presence will make our expressions more readable
and understandable.
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x �t y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(x′ �t′ y) if c ∈ {i,

a
i}

(x′ �t′ y′) if a = b and c ∈ {d,
a

d}
a(x′ �t′ y′) if a = b and c ∈ {σ, a

σ}
∅ otherwise.

We also have the following base cases: if x = ax′ (a ∈ Σ) y = ε, and t = ct′

(where c ∈ ΔΣ), then

x �t ε =

{
a(x′ �t′ y) if c ∈ {i,

a
i}

∅ otherwise.

If x = ε, then ε �t y = ε if t = y = ε, and ε �t y = ∅ otherwise.
Finally, x �ε y = ∅ if x �= ε. If x, y ∈ Σ∗ and T ⊆ Δ∗Σ , then x �T y =
∪t∈Tx �T y. If L1, L2 ⊆ Σ∗ and T ⊆ Δ∗Σ , then L1 �T L2 = ∪x∈L1,y∈L2x �T y.

3 Equivalence of Sets of Trajectories

We now consider, given Σ and two sets of trajectories T1, T2 ⊆ Γ ∗Σ , whether the
operations T1 , T2 coincide, that is, whether L1 T1 L2 = L1 T2 L2 for all
languages L1, L2 ⊆ Σ∗. If T1 , T2 represent, in this sense, the same operation,
we say that T1, T2 are equivalent sets of trajectories. We can also consider the
same problem for T1, T2 ⊆ Δ∗Σ , however, the results we obtain can be easily
transferred to that setting.

We note that for T1, T2 ⊆ {0, 1}∗ or T1, T2 ⊆ {i, d}∗, it is known that T1 and
T2 are equivalent if and only if they are equal. We note that this is not the case
for T1, T2 ⊆ Γ ∗Σ . As a simple example, consider T1 = {

a
0

a
1} and T2 = {

a
1

a
0}. Note

that for i = 1, 2,

L1 Ti
L2 =

{
{aa} if L1 ∩ L2 ⊇ {a};
∅ otherwise.

Thus, T1, T2 are equivalent, but not equal.
Our first step is to consider only those T ⊆ (Γ × Σ)∗. This is accomplished

through the finite substitution semΣ : Γ ∗Σ → 2(Γ×Σ)∗
:

semΣ(
a
c) = {a

c} ∀c ∈ Γ, a ∈ Σ;

semΣ(c) =
⋃

a∈Σ

a
c ∀c ∈ Γ.

If Σ is understood, then we denote semΣ by sem.
Note that semΣ(T ) is a regular set of trajectories if T is a regular set of

trajectories.

Lemma 3.1. Let T ⊆ Γ ∗Σ. Then T and semΣ(T ) are equivalent.
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Thus, it suffices to consider T1, T2 ⊆ (Γ ×Σ)∗. We now define an equivalence
relation on words as follows: Let I ⊆ (Γ ×Σ)2 be the following subset

I = {( a
c1,

a
c2) : a ∈ Σ, c1, c2 ∈ Γ}.

For two words z1, z2 ∈ (Γ × Σ)∗, say that z1 ↔I z2 if z1 = αβ1β2γ and z2 =
αβ2β1γ, where (β1, β2) ∈ I. We define the equivalence relation ∼I on (Γ ×Σ)∗

as the reflexive and transitive closure of ↔I . That is, for all u, v ∈ (Γ × Σ)∗,
u ∼I v if there exist k ≥ 1 and z1, z2, · · · , zk ∈ (Γ ×Σ)∗ such that u = z1, v = zk

and for all 1 ≤ i ≤ k − 1, zi ↔I zi+1.
This construction is a special case of partial commutation and trace lan-

guages, see Diekert and Métivier [5]. We note that I defines an independence
relation, and the quotient monoid IM = IM(Γ ×Σ, I) = (Γ ×Σ)∗/ ∼I is called
the free partially commutative monoid. Elements of IM are called traces. We
denote the equivalence class of a word x ∈ (Γ × Σ)∗ by [x]. For a language
L ⊆ (Γ ×Σ)∗, we denote [L] = ∪x∈L[x].

Lemma 3.2. For all t1, t2 ∈ (Γ ×Σ)∗, t1 ∼I t2, if and only if, for all x, y ∈ Σ∗,
x t1 y = x t2 y.

The above lemmata imply the following result:

Theorem 3.1. Let Σ be an alphabet and T1, T2 ⊆ Γ ∗Σ. Then T1, T2 are equiva-
lent if and only if [sem(T1)] = [sem(T2)].

We now address decidability. We say that a language R ⊆ IM is a ratio-
nal trace language if there exists a regular expression over IM whose language
equals R. The regular expressions are defined in the natural way, see Diekert
and Métivier [5, Sect. 4.1] for details.

Since I is transitive (i.e., (β1, β2), (β2, β3) ∈ I imply (β1, β3) ∈ I), we imme-
diately conclude the following result (see Diekert and Métivier [5, Thm. 5.2]):

Theorem 3.2. Let Σ be an alphabet and T1, T2 ⊆ Γ ∗Σ. If [sem(T1)], [sem(T2)]
are rational trace languages, it is decidable whether T1 and T2 are equivalent.

We note that since the mapping x → [x] defines a morphism between the
monoids Σ∗ and IM(Σ, I), every regular language R ⊆ Σ∗ yields a rational trace
language [R] ⊆ IM(Σ, I). Thus, we have the following corollary:

Corollary 3.1. Let Σ be an alphabet and T1, T2 ⊆ Γ ∗Σ. If T1, T2 are regular, it
is decidable whether T1 and T2 are equivalent.

4 Closure Properties

Theorem 4.1. Let Σ be an alphabet. There exist weak codings ρ1, ρ2, τ, ϕ and
a regular language R such that for all L1, L2 ⊆ Σ∗ and T ⊆ Γ ∗Σ.

L1 T L2 = ϕ(ρ−1
1 (L1) ∩ ρ−1

2 (L2) ∩ τ−1(T ) ∩R).
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Recall that a cone (or full trio) is a class of languages closed under morphism,
inverse morphism and intersection with regular languages. We have the following
corollary:

Corollary 4.1. Let L be a cone. Then for all L1, L2, T such that two are regular
languages and the third is from L, L1 T L2 ∈ L.

In particular, since the regular languages are a cone, we have the following
result (a direct construction using NFAs is also possible):

Corollary 4.2. Let L1, L2 ⊆ Σ∗,T ⊆ Γ ∗Σ be regular languages. Then L1 T L2
is a regular language.

Nonclosure properties of other classes of languages are inherited from the
syntactic case. In particular, the context-free and linear context-free languages
are not closed under T .

Theorem 4.2. Let Σ be an alphabet. There exist weak codings ρ1, ρ2, τ, ϕ and
a regular language R such that for all L1, L2 ⊆ Σ∗ and T ⊆ Δ∗Σ,

L1 �T L2 = ϕ(ρ−1
1 (L1) ∩ ρ−1

2 (L2) ∩ τ−1(T ) ∩R).

4.1 I-Regularity

Let B = {i, d}, BΣ = B ∪B×Σ, CΣ = {i} ∪ {i}×Σ and DΣ = {d} ∪ {d}×Σ.
We now present a class of trajectories T ⊆ B∗Σ which have the property that for
all regular languages R and all languages L (regardless of their complexity), the
language R �T L is regular.

Let Λm be the alphabet Λm = {#1,#2, . . . ,#m} for any m ≥ 1. We define a
class of regular substitutions from (DΣ +Λm)∗ to 2B∗

Σ , denoted Sm, as follows:
a regular substitution ϕ : (DΣ + Λm)∗ → 2B∗

Σ is in Sm if both

(a) ϕ(y) = {y} for all y ∈ DΣ ; and
(b) for all 1 ≤ j ≤ m, there exist u, v, w ∈ C∗Σ such that ϕ(#j) = uv∗w.

For all m ≥ 1, we define a class of languages T ⊆ (DΣ + Λm)∗, denoted by Tm,
as the set of all languages T ⊆ #1D

∗
Σ#2D

∗
Σ · · ·#m−1D

∗
Σ#m. We then define

the desired class of sets of trajectories, I, as follows:

I = {T ⊆ B∗Σ : ∃m ≥ 1, Tm ∈ Tm, ϕ ∈ Sm such that T = ϕ(Tm)}.
If T ∈ I, we say that T is i-regular.

Theorem 4.3. Let T ∈ I. Then for all regular languages R and all languages
L, R �T L is a regular language.

5 Examples

We now demonstrate the power of SST and SDT. We first note that SST consists
of a valid extension of the shuffle on trajectories: if T ⊆ {0, 1}∗, then L1 T L2 =
L1 T L2, the syntactic shuffle on trajectories operation [24]. We also note that
if T = σ∗, then T = ∩.
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Infiltration Product. Given the very natural set of trajectories T = (0 + 1 + σ)∗,
T denotes the infiltration product, ↑, see, e.g., Pin and Sakarovitch [28]. The

infiltration product is defined as follows: if x = x1 . . . xn is a word of length n
and I = (i1, i2, . . . , ir) is a subsequence of (1, 2, . . . , n), let xI = xi1xi2 · · ·xir .
Then given x, y ∈ Σ∗,

x ↑ y = {z ∈ Σ∗ : ∃I, J ⊆ [|z|] such that I ∪ J = [|z|], zI = x and zJ = y}.

For example, ab ↑ ba = {aba, bab, baab, baba, abba, abab}.

Ciliate Bio-operations. We now show how to use SST and SDT to simulate ciliate
bio-operations which have been the subject of recent research in the literature.
A model of ciliate bio-operations without circular variants were introduced by
Daley and Kari [3] to mimic the manner in which DNA is unscrambled in the
DNA of certain uni-cellular ciliates in the process of asexual reproduction. Ciliate
bio-operations are also investigated by Ehrenfeucht et al. [11] and Daley and
McQuillan [4] using different formal language approaches.

Daley and Kari [3] (see also Daley et al. [2]) define several language operations
which simulate ciliate bio-operations, including synchronized insertion, deletion
and bi-polar deletion. Synchronized insertion can be given as follows:

α⊕ β = {uavaw : a ∈ Σ,α = uaw, β = va}.

The original definition of all operations in this section allowed for “contexts”
– i.e. the positions synchronization occur – longer than a ∈ Σ, but it is shown
by Daley and Kari that single-letter contexts suffice.) The operation is extended
to languages as usual. Let T =

⋃
a∈Σ 0∗

a
0 1∗

a
1 0∗. Then for all L1, L2 ⊆ Σ∗,

L1 ⊕ L2 = L1 T L2. Synchronized deletion can be defined as

α$ β = {uaw : a ∈ Σ,α = uavaw, β = va}.

Let Σ be an alphabet and T =
⋃

a∈Σ i∗
a
i d∗

a

d i∗. Then for all L1, L2 ⊆ Σ∗,
L1 $ L2 = L1 �T L2. Synchronized bi-polar deletion can be defined as

α� β = {va : a ∈ Σ,α = uavaw, β = uaw}.

Let Σ be an alphabet, and T =
⋃

a∈Σ d∗
a

d i∗
a
i d∗. Then for all L1, L2 ⊆ Σ∗,

L1 � L2 = L1 �T L2.
We note the similarity between the three sets of trajectories in the three

previous examples. We expect this, as similar relationships exists between op-
erations and their inverses which are modelled by shuffle and deletion along
trajectories [6, 18]. We will formalize this in Section 6 and thus demonstrate the
corresponding decidability results for language equations involving the above
bio-operations.

We also note that the closure of the regular languages under each of ⊕,$,�
is a direct consequence of the closure properties in Section 4. However, note also
that $,� are the finite union of i-regular sets of trajectories. We will use this
fact in Section 6.2.
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Contextual Insertions and Deletions. Contextual insertion and deletion were in-
troduced by Kari and Thierrin as a simple set of operations which are capable
for modelling DNA computing [19].

Let Σ be an alphabet and [x, y] ∈ (Σ∗)2. We call [x, y] a context. Then given
v, u ∈ Σ∗, the [x, y]-contextual insertion of v into u is given by u

←−
[x,y] v =

{u1xvyu2 : u = u1xyu2, u1, u2 ∈ Σ∗}. Let C ⊆ (Σ∗)2. Then

u
←−

C v =
⋃

[x,y]∈C

u
←−
[x,y] v.

The operation ←−
C is extended to languages monotonically as expected. Let

x = x1 · · ·xn and y = y1 · · · ym be arbitrary words over Σ. Then define

T[x,y] = 0∗
n∏

i=1

xi

0 1∗
m∏

i=1

yi

0 0∗.

We naturally extend this to TC = ∪[x,y]∈CT[x,y] for all C ⊆ (Σ∗)2. Under this
definition it is clear that TC

=←−C for all C ⊆ (Σ∗)2.
Kari and Thierrin note that if C ⊆ (Σ∗)2 is finite, then the regular and

context-free languages are closed under ←−C . As TC is regular for all finite C,
we note that the closure of the regular languages under ←−C is a consequence of
Corollary 4.2. Further investigation of the closure properties of SST are necessary
to show, as a corollary, the known closure of the CFLs under ←−C [19].

For [x, y] ∈ (Σ∗)2, the [x, y]-contextual deletion of a word v from u is defined
as u −→[x,y] v = {u1xyu2 : u = u1xvyu2, u1, u2 ∈ Σ∗}. This operation is extended
to sets of contexts C ⊆ (Σ∗)2 as in the case of contextual insertion. Note that
in this case, if x = x1 · · ·xn and y = y1 · · · ym, we define T[x,y] ⊆ Δ∗Σ as

T[x,y] = i∗
n∏

j=1

xj

i d∗
m∏

j=1

yj

i i∗.

In this case, if C is finite, we may immediately conclude that the regular and
context-free languages are closed under C-contextual deletion with a regular
language. This was established by Kari and Thierrin [19, Cor. 2.1].

Finally, we note that [x, y]-contextual dipolar deletion, defined by u �
[x,y] v =

{w ∈ Σ∗ : u = u1xwyu2, v = u1xyu2}, is simulated by

T[x,y] = d∗
n∏

j=1

xj

d i∗
m∏

j=1

yj

d d
∗,

if x = x1 · · ·xn and y = y1 · · · ym. The closure of the regular languages under C-
contextual dipolar deletion for finite C ⊆ (Σ∗)2 is an instance of Corollary 4.2;
this was first established by Kari and Thierrin [19, Prop. 4.1].

Synchronized Shuffle. Recall that synchronized shuffle (see, e.g., Latteux and
Roos [22]) is defined as follows. Let Σ1, Σ2 be alphabets, not necessarily disjoint.
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Let ρi : (Σ1 ∪ Σ2) → Σi be the projection onto Σi given by ρi(a) = a for all
a ∈ Σi and ρi(a) = ε for all a ∈ (Σ1 ∪Σ2) −Σi.

Let Li ⊆ Σi for i = 1, 2. Then the synchronized shuffle of L1 and L2, denoted
L1 ‖ L2, is given by

L1 ‖ L2 = ρ−1
1 (L1) ∩ ρ−1

2 (L2).

Lemma 5.1. Let Σ1, Σ2 be alphabets. Let T ⊆ Γ ∗Σ1∪Σ2
be given by

T = ((
⋃

a∈Σ1∩Σ2

a
σ) + (

⋃
a∈Σ1−Σ2

a
0) + (

⋃
a∈Σ2−Σ1

a
1))∗.

Then for all L1, L2 such that Li ⊆ Σi for i = 1, 2,

L1 ‖ L2 = L1 T L2.

We can generalize the notion of synchronized shuffle to develop a notion
of synchronized shuffle along trajectories, which we denote by ‖T for arbitrary
T ⊆ {0, 1}∗. Specifically, let Σ1, Σ2 be alphabets and let T ⊆ {0, 1}∗ be a
chosen set of trajectories (which will give the desired set of trajectories for non-
synchronized events). Let ζ(T ) be the set of trajectories which we obtain from T

under the finite substitution ζ which maps 0 to ∪a∈Σ1−Σ2

a
0 and 1 to ∪a∈Σ2−Σ1

a
1.

Finally, let
Ts = ζ(T ) (

⋃
a∈Σ1∩Σ2

a
σ)∗.

Then let ‖T be given by Ts
. We note that ‖T is a natural generalization of ‖

in the same way that T is a generalization of : in both cases, with T = {0, 1}∗,
we are left with the operation we have generalized.

The operation ‖T is a useful generalization of ‖, especially for modelling
discrete event systems (DES) in the Ramadge-Wonham framework [1]: by al-
tering T , the operation ‖T allows us to specify restrictions to the way in which
plants (which are modelled by regular languages) are allowed to interleave their
processes, without restricting the way in which their synchronized actions are
required to behave. This has applications in modelling where constraints such as,
e.g., fairness, are necessary. Fairness has previously been discussed by Mateescu
et al. [24, Sect. 6.1].

Latin Product. Mateescu and Salomaa [25] define the operation of Latin product
as follows: let u = u1u2 · · ·un and v = v1 · · · vm be words over Σ. Then the Latin
product � is given by

u � v =
{
u1u2 · · ·unv2v3 · · · vm if un = v1;
u1u2 · · ·unv1v2 · · · vm otherwise.

The Latin product is used in modelling parallel processes with re-entrant

routines [25]. We note that with T� = 0∗σ1∗+∪a,b∈Σ,a �=b0∗
a
0

b
1 1∗, the operation

T

is exactly the Latin product.
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6 Decidability of Equations

We now turn to language equations involving SST and SDT. Equations of this
form have been previously studied by, e.g., Daley et al. [2, 3] and Kari and
Thierrin [19], as well as by the author [6], Kari and Sośık [18] and the author and
Salomaa [9, 10] for syntactic shuffle on trajectories. As in these previous works,
we focus on the decidability of the existence of solutions to certain language
equations.

Before beginning with language equations, we establish the left- and right-
inverse properties between SST and SDT, in the sense established by Kari [14].

Theorem 6.1. Let Σ be an alphabet. There exists a morphism τ : Γ ∗Σ → Δ∗Σ
such that for all x, y, z ∈ Σ∗ and for all t ∈ Γ ∗Σ, x ∈ y t z ⇐⇒ y ∈ x �τ(t) z.

Theorem 6.2. Let Σ be an alphabet. There exists a morphism π : Γ ∗Σ → Δ∗Σ
such that for all x, y, z ∈ Σ∗ and all t ∈ Γ ∗Σ, x ∈ y t z ⇐⇒ z ∈ x �π(t) y.

Theorem 6.3. Let Σ be an alphabet. There exists a morphism symΔ : Δ∗Σ →
Δ∗Σ such that for all x, y, z ∈ Σ∗ and all t ∈ Δ∗Σ, x ∈ y �t z ⇐⇒ z ∈
y �symΔ(t) x.

6.1 Solving Linear Equations

Given two binary word operations ", � : (Σ∗)2 → 2Σ∗
, we say that " is a left-

inverse of � [14, Defn. 4.5] (resp., a right-inverse of � [14, Defn. 4.1]) if, for
all u, v, w ∈ Σ∗, w ∈ u � v ⇐⇒ u ∈ w " v (resp., for all u, v, w ∈ Σ∗,
w ∈ u � v ⇐⇒ v ∈ u "w). The following results of Kari [14, Thms. 4.2 and 4.6]
allow us to find solutions to equations involving shuffle on trajectories.

Theorem 6.4. Let L,R be languages over Σ and ", � be two binary word oper-
ations, which are left-inverses (resp., right-inverses) to each other. If the equa-
tion X " L = R (resp., L "X = R) has a solution X ⊆ Σ∗, then the language
R′ = R � L (resp., R′ = L � R) is also a solution of the equation. Moreover, R′

is a superset of all other solutions of the equation.

Thus, the following theorem is immediate:

Theorem 6.5. Let Σ be an alphabet, Let L,R ⊆ Σ∗ be regular languages and
T ⊆ Γ ∗Σ be a set of trajectories. Then for each of the following equations, it is
decidable whether there exists X ⊆ Σ∗ such that equality holds: (a) L T X = R;
(b) X T L = R; (c) L �T X = R; (d) X �T L = R.

The particular cases of ⊕ and $ of Theorem 6.5 were given by Daley and
Kari [3, Prop. 11, Prop. 18]. For a finite set of contexts C ⊆ (Σ∗)2, the particular
cases of Theorem 6.5 were given by Kari and Thierrin [19, Prop. 5.3].
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6.2 Solving Decompositions

If T ⊆ B∗Σ is a regular set of trajectories which is a finite union of regular,
i-regular sets of trajectories, we say that T is a pseudo-letter-bounded (regular)
set of trajectories. Let V = {0, 1} and VΣ = V ∪ V × Σ. If T ⊆ V ∗Σ is a set of
trajectories such that τ(T ) and π(T ) are pseudo-letter-bounded (where π and τ
are from Theorem 6.1 and 6.2), we also say that T is pseudo-letter-bounded.

For instance, let Σ be arbitrary and T = ∪a∈Σi
∗ a
i d∗

a

d i∗, as given in
Section 5. Then T is pseudo-letter-bounded as Ta = 0∗

a
0 1∗

a
1 0∗ is i-regular

for all a ∈ Σ (by choosing T ′a = #1d
∗ a

d #2 and ϕ with ϕ(#1) = i∗
a
i and

ϕ(#2) = i∗). Our main result is:

Theorem 6.6. Let T = ∪n
i=1Ti ⊆ V ∗Σ be a pseudo-letter-bounded regular set of

trajectories. Then given a regular language R, it is decidable whether there exist
X1, X2 such that X1 T X2 = R.

The following is an interesting particular case, which has not been examined
with respect to synchronized insertion:

Corollary 6.1. Let R be a regular language. Then it is decidable whether there
exist languages X1, X2 such that R = X1 ⊕X2.

Further, the following is also a corollary of Theorem 6.6 not previously noted:

Corollary 6.2. Let C ⊆ (Σ∗)2 be a finite set of contexts. Let R be a regular
language. Then it is decidable whether there exist languages X1, X2 such that
R = X1

←
C X2.
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Abstract. In this paper we define Sturmian graphs and we prove that all
of them have a “counting” property. We show deep connections between
this counting property and two conjectures, by Moser and by Zaremba,
on the continued fraction expansion of real numbers. These graphs turn
out to be the underlying graphs of CDAWGs of central Sturmian words.
We show also that, analogously to the case of Sturmian words, these
graphs converge to infinite ones.

1 Introduction

Sturmian words are aperiodic infinite words over a binary alphabet of minimal
complexity, i.e., with exactly n+1 factors of length n. They have been extensively
studied for their properties and equivalent definitions. Moreover, the well-known
Fibonacci word is Sturmian.

Among the different definitions, one is that obtained by considering the in-
tersections with a square-lattice of a ray having an irrational slope α > 0. The
word obtained by coding each vertical intersection with an a, each horizontal in-
tersection by a b and each corner with ab or ba is Sturmian. If the ray starts from
the origin, the word obtained is called characteristic. Another way for construct-
ing characteristic Sturmian words is by applying the standard method. Define
inductively the two sequences of words {An} and {Bn} by{

A0 = a
B0 = b

and by the Rauzy’s two rules [20]

R1 :
{
An+1 = An

Bn+1 = AnBn
R2 :

{
An+1 = BnAn

Bn+1 = Bn

These two sequences converge, when each of the two rules is applied infinitely
often, to the same infinite word which is characteristic and conversely each char-
acteristic word is obtained in this way.

� Partially supported by MIUR National Project PRIN “Linguaggi Formali e Automi:
teoria ed applicazioni.”

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 175–187, 2004.
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Given a pair (An, Bn), we can associate with it its directive sequence (cf.
[8]), that is, the sequence of integers [a0, a1, . . . , as] such that

∑s
i=0 ai = n,

representing the fact that the final sequencesAn andBn are obtained by applying
R1 to A0 and B0 a0 consecutive times, after that R2 a1 consecutive times, etc.
Words obtained by removing last two characters from An or Bn are called central
Sturmian words. Given a pair (An, Bn) having directive sequence [a0, a1, . . . , as],
it is possible to define recursively max(|An|, |Bn|) as the (s + 1)-th element of
the following sequence (lj):⎧⎨⎩ l0 = 1

l1 = a0 + 1
lj+1 = aj · lj + lj−1

j = 1 . . . s

For references on Sturmian words and their geometric representation see [17,
Chap. 2] and [14].

If the directive sequence [a0, a1, · · ·] is infinite, the infinite word to which An

and Bn converge represents a ray having slope α, where α has [a0, a1, . . .] as its
simple continued fraction expansion.

Let us recall some basic notations and results on continued fractions.
If α is a real number, we can expand α as a simple continued fraction

α = a0 +
1

a1 + 1
a2+ 1

a3+...

which is usually abbreviated as α = [a0, a1, a2, a3, . . .].
In this paper, we only discuss the case where a0 is a non-negative integer and

ai is a positive integer for i ≥ 1; the expansion may or may not terminate. For
references to continued fractions, see [10–Chap. 10], [18], [5] and [21].

If α is irrational, this representation is infinite and unique. If α is rational,
there are two possible finite representations of it. Indeed, it is well known that
[a0, a1, . . . , as−1, as, 1] = [a0, a1, . . . , as−1, as + 1].

The integers in the continued fraction expansion of a real number are called
partial quotients.

Given the continued fraction expansion of α, it is possible to construct a
sequence of rationals Ps

Qs
, called “convergents”, that converges to α, by the fol-

lowing rules ⎧⎨⎩P0 = a0 Q0 = 1
P1 = a1 · a0 + 1 Q1 = a1
Ps+1 = an · Ps + Ps−1 Qs+1 = as ·Qs +Qs−1

It is easy to see that lj+1 = Pj +Qj .

The directed acyclic word graph of a word w, DAWG(w), is the smallest
finite state automaton that recognizes all the suffixes of the word. DAWGs have
linear size and can be built in linear time with respect to the size of the word.
They are involved in several combinatorial algorithms on strings and have many
applications, such as full-text indexing. If the last letter inw is a letter $ that does
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not appear elsewhere in w, DAWG(w) coincides, apart from the set of final states,
with the factor automaton of w, i.e., with the minimal deterministic automaton
that recognizes the factors of w. Blumer et al. (cf. [1, 2, 3]) first introduced the
compact directed acyclic word graph of a word w, CDAWG(w), a space efficient
variant of DAWG(w), obtained by compacting it. Arcs in the obtained structure
are labeled by representations of the factors of the word. More precisely, each
arc is labeled by the initial position and the length of the factor represented by
the arc. For a reference on CDAWGs, see also [6, 7, 12, 13].

In this paper we will define a new data structure, the Sturmian Graph of
a directive sequence [a0, . . . , as], G([a0, . . . , as]), and we will show how it co-
incides with the CDAWG of the word w obtained by the longest word in the
pair (An, Bn) of directive sequence [a0, . . . , as] replacing last two letters with
a $ symbol, where the label of each arc is replaced by the length of the factor
it represents. More exactly we will show that G([a0, . . . , as]) coincides with the
CDAWG of the word obtained in such a way, where arcs are labeled only by the
lengths of the factors they represent.

The proofs of all results in this paper can be found in [9].

2 Special (or Finite) Sturmian Graphs

A weighted DAG is a directed acyclic graph, where each arc is weighted by a real
number.

For any rational P
Q = [a0, . . . , as] with

∑s
i=0 ai ≥ 2 we inductively de-

fine a graph G(P
Q ) = G([a0, . . . , as]) that we call the Sturmian graph of P

Q =
[a0, . . . , as]. This graph is a weighted DAG where weights are positive integers.

If a0 = 0 we set G([a0, a1, . . . , as]) = G([a1, . . . , as]). Therefore in what fol-
lows we will suppose that a0 ≥ 1.

The first Sturmian graph, the base case, is the graph G([1, 1]) = G([2]). It
consists of only two states and two arcs, both going from state 1 to the final
state F and having weights respectively 1 and 2. It can be seen in Figure 1.
To give the inductive step, let us recall the definition of the sequence (lj):⎧⎨⎩ l0 = 1

l1 = a0 + 1
lj+1 = aj · lj + lj−1

1

F

1

2

Fig. 1. Base case
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Given the Sturmian graph of [a0, . . . , as], s ≥ 0,
∑s

i=0 ai ≥ 2, G([a0, . . . , as]),
we define the Sturmian graph G([a0, . . . , as, 1]) in the following way. Each arc of
maximal length in G([a0, . . . , as]) (all of them end at the final state) is split in
one arc of that length minus 1 from the same outgoing state to a new state (the
same for each arc) and two arcs from this new state towards the final one, one
labeled 1 and the other labeled ls + 1.

Moreover, if as = 1, then for each state of out-degree 2, except the new one,
one must add a new outgoing arc labeled ls + 1 towards the final state, with the
exception of the new state that has already one such arc.

As [a0, a1, . . . , as, 1] = [a0, a1, . . . , as + 1], the previously defined inductive
step lets us construct every Sturmian graph G([a0, . . . , ak]), k ≥ 0.

Let us give some examples. Figure 2 shows graphs G([3, 1]) and G([1, 1, 1, 1]).
The first one is obtained starting from G([3]), inductively built from the base
case G([2]), being G([3]) = G([2, 1]). The second one is derived starting from
G([1, 1, 1]) that, in turns, comes out from the base case G([1, 1]).

F

1

2

1

11
1

1

2

3

F

1

2

1

1

3

2

2

1 4

1

4

Fig. 2. Graphs G([3, 1]) and G([1, 1, 1, 1])

Proposition 1. The Sturmian graph G([a0, . . . , as, 1]), s ≥ 0, n =
∑s

i=0 ai+1 ≥
2, contains exactly n states, among them as of out-degree 2, and 3(n − 1) − as

arcs.

Definition 1. A DAG having a unique smallest state with respect to the order
induced by the arcs is called semi-normalized. If it has also a unique greatest
state it is called normalized. The smallest state is called the initial state and the
greatest is called the final one.

Note that any normalized DAG is also semi-normalized. Note also that any
DAG can always be semi-normalized by adding at most one new state and can
be normalized by adding at most two new states.
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Definition 2. A normalized weighted DAG G has the (1, n)-counting property,
or, in short, it counts from 1 to n if any path from the initial state to the final one
has weight in the range 1 . . . n and for any i, 1 ≤ i ≤ n there exists just a unique
path from the initial state to the final one having weight i. A semi-normalized
weighted DAG G′ has the (1, n)-counting property, or, in short, it counts from
1 to n if any nonempty path from the initial state has weight w in the range
1 . . . n and for any i, 1 ≤ i ≤ n there exists just a unique path that starts from
the initial state and have weight i.

Remark 1. Note that a normalized graph is also semi-normalized and that it can
have the counting property as semi-normalized but not as normalized. Indeed, if
G′ is semi-normalized and it counts from 1 to n, then we can build a normalized
DAG G that counts from 1 to n + 1 in the following way. Add a final state F
to G′, and, for any state q ∈ G′ add also an arc (q, F ) labeled by 1. If G′ has
out-degree at most h then G has out-degree at most h+ 1.

Suppose, conversely, that G is normalized with final state F with positive
integer weights, that it counts from 1 to n + 1 and that from any state q there
is an arc (q, F ), then we can build a DAG G′ semi-normalized that counts from
1 to n in the following way. For any arc (q, F ) decrease its label by 1, and, if
this label is now 0, erase the arc. If G has out-degree at most h+ 1 then G′ has
out-degree at most h.

It is easy to prove that Sturmian graphs are normalized weighted DAG with
positive integer weights and out-degree at most 3.

Indeed, Sturmian graphs turn out to have also the (1, n)-counting property
for some n, as pointed out by the following theorem, whose proof is given in next
section. The proof is based on the fact that Sturmian graphs are CDAWGs of
Sturmian words and any CDAWG has the counting property, i.e., it is a direct
consequence of Proposition 6 and Theorem 2 together with its remark.

Theorem 1. G(P
Q = [a0, . . . , as]) can count from 1 up to P +Q− 1.

The reader can check that G( 5
3 = [1, 1, 1, 1]) can count from 1 up to 7.

Remark 2. Notice that in Sturmian graphs having final state F , from any state q
there is an arc (q, F ). Therefore we can apply the procedure described in Remark
1 and obtain a semi-normalized DAG G′(P

Q ) with positive integer weights, of out-
degree at most 2, that can count from 1 up to P + Q − 2. By extension, these
graphs are also called Sturmian graphs.

We are now interested in the “inverse problem”.

Problem 1. Given a positive integer m, find a normalized DAG with positive
integer weights, where each state has out-degree at most 3, having minimal
number of states and that can count from 1 up to m.

The reader can check that for any positive integer m there are just two (up to
isomorphisms) normalized DAGs with positive integer weights, where each state
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has out-degree at most 2, that can count from 1 up to m. They have respectively
m and m+ 1 states. Therefore the hypothesis on the out-degree 3 makes sense.
The same problem can be analogously stated for semi-normalized DAGs with
out-degree at most 2. Notice also that if we do not impose a bound on the out-
degree above problem has the trivial solution given by a graph having just the
initial and the final states and m arcs labeled from 1 to m going from the initial
to the final.

We do not know whether above problem can be settled in polynomial time
in the size of log(m) (recall that the number of bits needed to describe m is
O(log(m)). We do not even know whether the minimal number of states is
O(log(m)), and, concerning this fact, we make the following conjecture.

Conjecture 1. Given a number m, the minimal number of states of a normalized
DAG with positive integer weights, where each state has out-degree at most 3,
that can count from 1 up to m is O(log(m)).

For some special classes of numbers above conjecture is a consequence of
Theorem 1 and Proposition 1. For instance, if m = fs − 1, where fs is the s-th
Fibonacci number, then G( fs−1

fs−2
) has s− 1 states, because fs−1

fs−2
= [a0, a1, . . . , as]

with, for any i, 0 ≤ i ≤ s, ai = 1. Since it is well known that fs = O(ϕs), where
ϕ is the golden ratio, the Conjecture 1 holds true.

By using Theorem 1 and Proposition 1, with the same ideas used to prove
above conjecture for m = fs − 1 we can prove the following proposition.

Proposition 2. If there exists an integer K such that for every integer m ≥ 1
there exist integers 1 ≤ p < q with gcd(p, q) = 1 and p + q = m such that
every partial quotient in the continued fraction expansion of p/q is ≤ K then
Conjecture 1 is true.

We conjecture further that the hypothesis of previous proposition always
holds.

Conjecture 2. There exists an integer K such that for every integer m ≥ 1 there
exist integers 1 ≤ p < q with gcd(p, q) = 1 and p+q = m such that every partial
quotient in the continued fraction expansion of p/q is ≤ K.

We do not know if this conjecture is true, but it turns out to be equivalent
to the following celebrated conjecture of Zaremba.

Conjecture 3 (Zaremba). There exists an integer K such that for every integer
m ≥ 1 there exists an integer i, 1 ≤ i ≤ m, gcd(i,m) = 1, such that every partial
quotient in the continued fraction expansion of i/m is ≤ K.

In [4] it is reported that Zaremba’s conjecture has been verified with constant
K = 5 up to 3200000 by D. Knuth.

Proposition 3. Conjecture 2 and Zaremba’s conjecture are logically equivalent.
The same K can be used in both cases.
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Alternatively we can consider the sum of the partial quotients. Moser made
the following conjecture that is weaker than Zaremba’s one, in the sense that if
Zaremba conjecture is true then also next conjecture is true.

Conjecture 4 (Moser). There exists a constant c such that for all integers m ≥ 2
there exists an integer i, 0 ≤ i ≤ m, gcd(i,m) = 1, such that i/m ≤ c logm.

As above, Moser’s conjecture is logically equivalent to a similar conjecture
about the sum of p and q.

Indeed, analogously to Proposition 2 we have the following proposition.

Proposition 4. If the Moser’s conjecture is true then Conjecture 1 is also true.

Larcher [15–Corollary 2] proved that this conjecture holds if logn is replaced
by (logn)(log logn)2. Hence we get

Proposition 5. There exists a constant c such that for all integers n ≥ 2 there
exist integers p, q with gcd(p, q) = 1 and p+q = n such that p/q = [0, a1, . . . , an]
and

∑
i ai < c(logn)(log logn)2.

This result implies a weak form of our conjecture.

Corollary 1. Given a number m, there exists a constant c such that the minimal
number of states of a normalized DAG with positive integer weights, where each
state has out-degree at most 3 and that can count from 1 up to m, is smaller
than c(logm)(log logm)2.

3 Indexing, DAWGS and Sturmian Graphs

The directed acyclic word graph of a word w, DAWG(w), is the smallest finite
state automaton that recognizes all the suffixes of the word. DAWGS have sev-
eral applications, such as indexing. Blumer et al. (cf. [1, 2, 3]) introduced the
compact directed acyclic word graph of a word w, CDAWG(w), that is obtained
by compacting DAWG(w), i.e., by deleting all states of out-degree 1 and their
corresponding edges, joining all consecutive arcs in a path including such states
in an unique arc. Thus arcs are labeled by representations of the factors of
the word. More precisely, each arc is labeled by the initial position and the
length of the factor represented by the arc. For a reference on CDAWGs, see
also [6, 7, 12, 13]. We just recall that the underlining DAG of the CDAWG of w,
that is CDAWG(w) without labels, is a semi-normalized one. If the last character
of w is a symbol never encountered before in w, then the underlining DAG of
the CDAWG of w is a normalized one, i.e., it has also a unique final state.

In this section we will show how the Sturmian DAG G([a0, . . . , as]) defined in
last section coincides with the CDAWG of the word w obtained by the longest
word in the pair (An, Bn) of directive sequence [a0, . . . , as] replacing last two
letters with a $ symbol, where the label of each arc is replaced by the length of
the factor it represents.
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CDAWGs can be used in indexing. Indeed a CDAWG of a word w can give
the list of all occurrences of a factor of w in time proportional to the size of this
list. Indeed, by reading the factor in the CDAWG we reach a position t in it.
This position either can be a state or can correspond to a proper prefix of the
word representing the label of an arc. Each occurrence of the required factor is
the length of w minus the length of any path from position t to any final state.
The reason of this relies on the fact that all possible paths represent a branch
of the suffix-tree of w corresponding to the required factor.

Since the empty word is a factor of any word w, the list of its occurrences in
w is the set {1, 2, . . . , |w|}. Hence we have proved the following.

Proposition 6. Suppose that the last character of w is a symbol never encoun-
tered before in w. If we label each arc of CDAWG(w) just with the length of the
factor it represents, the obtained weighted DAG can count from 1 up to |w|.
Let us go in details. Consider the s-uple [a0, . . . , as] and apply the Rauzy rule R1
a0 times to the pair (A0, B0) = (a, b). We will obtain a pair (Aa0 , Ba0). Let us now
apply a1 times R2 rule to (Aa0 , Ba0), in such a way we obtain (Aa0+a1 , Ba0+a1).
Let us continue by alternating the two rules and at the end we will have the
pair (Aa0+···+as

, Ba0+···+as
) of directive sequence [a0, . . . , as]. Pick the longest

between these two words and replace last two letters with a $ symbol. The word
obtained is the one whose CDAWG we are interested in.

Let us give an example. Consider the directive sequence [1, 1, 1, 1], the word
we obtain is abaaba$. In fact

(a, b) →R1 (a, ab) →R2 (aba, ab) →R1 (aba, abaab) →R2 (abaababa, abaab)
Figure 3 shows CDAWG(abaaba$) and, next to it, the DAG obtained by it

labelling each arc only with the length of the factor it represents. In order to
give a better idea of which factor each arc represents we have labelled each arc
not with the initial position and the length of the factor, but by the factor itself.
This kind of representation will be also used in Figure 5. Remember that it is not
the right representation, because this last representation requires, in the worst
case, quadratic space, while the right one requires only linear space.
As we can see, the DAG obtained coincides with Sturmian graph G([1, 1, 1, 1]),
i.e., with the Sturmian graph of the same sequence from which we have obtained
word abaaba$.

What is surprising in CDAWGs of Sturmian words is that they have a rel-
atively “small” number of nodes, compared to the length of the word itself, as
shown by Proposition 1 and next theorem.

Theorem 2. Let wn be the word obtained by replacing in the longest word of the
pair (An, Bn) of directive sequence [a0, . . . , as, 1] last two letters with a $ symbol
and CDAWG(wn) be its CDAWG. Let now code each arc with the length of the
factor it represents. The obtained DAG always coincides with the Sturmian graph
G([a0, . . . , as, 1]).

Remark 3. Notice that if P
Q = [a0, . . . , as, 1] then the length of wn defined in

Theorem 2is P +Q.
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Fig. 3. The CDAWG of word abaaba$ and the one obtained by coding each arc with
the length of the factor it represents

The proof of the theorem will not be reported here. It requires some combina-
torial results described in [8], the main result of [19] and it requires an inductive
characterization of CDAWG(wn) that we describe in what follows and that, by
itself, represents a significative contribution of this paper.

Given the directive sequence [1, 1], the pair (A1+1, B1+1) obtained by apply-
ing to pair (a, b) once Rauzy ruleR1 and onceR2 rule is (A1+1, B1+1) = (aba, ab).
Let us pick the longest between the two words and replace last two letters with
a $ symbol. We obtain word a$. The CDAWG of a$ is represented in Figure 4.
It is the same of the CDAWG corresponding to the directive sequence [2] and
represents the base case. Before introducing the inductive step, let us give some

F

1

a$ $

Fig. 4. CDAWG(a$)

new notation. Let w be a word, we will denote w= the word obtained by w delet-
ing its two last letters and by w$, the catenation of w and $ symbol. Moreover
given two words u = α1 . . . αi and v = α1 . . . αj the first one being prefix of the
second one, we will denote with u−1v the factor αi+1 . . . αj of v. Finally, given
a pair (An, Bn), we will denote with Mn the longest between the two words An

and Bn.
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Given the CDAWG corresponding to the directive sequence [a0, . . . , as], s ≥
0,
∑s

i=0 ai ≥ 2, we define the CDAWG corresponding to the directive sequence
[a0, . . . , as, 1] in the following way, depending on the value of s.

1. If s is even, i.e., we have just applied R1 rule, then each arc which label
corresponds to the factor Sn$ = (Mn−1

=)−1
B=

n $ will be split in an arc
labeled Sn from the same outgoing state towards a new state and two arcs
from this new state towards the final one, labeled $ and Tn = (B=

n )−1
A=

n+1$.
Moreover, if as = 1, then for each state of out-degree 2, except the new one,
there is a new outgoing arc labeled Tn towards the final state.

2. If s is odd, i.e., we have just applied R2 rule, then each arc which label
corresponds to the factor S′n$ = (Mn−1

=)−1
A=

n $ will be split in an arc
labeled S′n from the same outgoing state towards a new state and two arcs
from this new state towards the final one, labeled $ and T ′n = (A=

n )−1
B=

n+1$.
Moreover, if as = 1, then for each state of out-degree 2, except the new one,
there is a new outgoing arc labeled T ′n towards the final state.

In such a way we can construct a CDAWG corresponding to each directive
sequence [a0, . . . , ak], k ≥ 0. Indeed, it is a folklore result that the central Stur-
mian word of directive sequence [a0, . . . , as, 1] coincides with the one of directive
sequence [a0, . . . , as+1].

Let us give some examples. Figure 5 shows CDAWGs corresponding to direc-
tive sequences [3] and [3, 1], the first one obtained directly from the base case,
and the second one obtained starting from the first one.

F

F

1

2

a

$a
$

$

a$

3

1

2

a

$

a$

$

Fig. 5. CDAWGs corresponding to directive sequences [3] and [3, 1]

4 Infinite Graphs

Analogously as done with finite and infinite words, we can define a convergence
of semi-normalized weighted DAWGs. More precisely, we say that a sequence
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Gn, n = 0 . . .∞, of semi-normalized weighted DAWGs with positive weights,
converges to the infinite weighted DAG G if for any constant c ≥ 0 there exists
a number n̂ such that for any n ≥ n̂ the restriction of Gn and G to states having
distance from the initial state smaller than K are isomorphic. Moreover the num-
ber of outgoing arcs from such states together their weights must be the same.

Notice that the second condition implies that the number of outgoing arcs
from any state in G is finite, while it is still possible for one state to have infinitely
many ingoing arcs, as it will be shown in what follows.

Definition 3. For any irrational number α > 0 we define the Sturmian graph
G(α) as the (unique) limit of the sequence of graphs G( Pn

Qn
), n = 0 . . .∞, where

Pn

Qn
, n = 0 . . .∞, is the sequence of convergents to α.

The reader can check that above definition is a good one, i.e., that G(α)
exists and it is unique. It is worth noticing the behavior of the final state F .
Its distance from the initial state is 1, and, consequently it belongs to G(α).
Moreover, eventually any state will have an arc toward F of weight 1. Therefore
in G(α) it has no outgoing arcs but infinitely many ingoing arcs, each weighted
by 1. As Sturmian words represents geometrical ray, this state F can be thought
as the analogous of the vanishing point in projective geometry. Analogously as
in the finite case, we call F the final state of the DAWG.

The extension of Definition 2 is left to the reader, as well the proof of next
two propositions.

Theorem 3. For any positive irrational α, G(α) can count from 1 up to infinity.

If α =
√

5+1
2 , that is the golden ratio, we call G(α) the Golden graph.

Proposition 7. For every m ≥ 1 the Golden graph, uses O(logϕ(m)) states to
count from one to m.

Since any state reaches the vanishing state with an arc of length 1, we can
eliminate the vanishing state and the arc going to it and the new graph G′(α)
can count from 0 to infinity, supposing each state “terminal”. Indeed G′(α) is
the limit graph of the sequence G′( Pn

Qn
), n = 0 . . .∞, where Pn

Qn
, n = 0 . . .∞, is

the sequence of convergents to α and G′( Pn

Qn
) is defined in Remark 2.

Definition 4. An infinite graph having a denumerable number of states has the
“local” property, or, in short, it is local, with constant k if there exists a way of
numbering states such that for any state i all outgoing arcs (i, j) are such that
i− k ≤ j ≤ i+ k.

Next proposition makes a link between the structure of a Sturmian graph
and the continued fraction expansion of α.

Proposition 8. G′(α) is local if and only if α has bounded partial quotients in
its continued fraction expansion.
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Abstract. Based on a quite general definition of P systems where the
rules are applied in a sequential way (and not in the maximally parallel
way as it usually happens in most models of P systems considered so far
in the literature), we investigate the generative power of various models
of such P systems working in the sequential mode on arrays and strings,
respectively. P systems working in the sequential mode on arrays/strings
without priority relations for the rules reveal the same computational
power as the corresponding matrix grammars without appearance check-
ing working on arrays/strings. For obtaining the computational power of
matrix grammars with appearance checking, priority relations for the
rules (as one of many other possible additional features) are needed.

1 Introduction

In the area of P systems, applying the rules in a maximally parallel way is one of
the most common features of many models introduced so far, i.e., when in 1998
Gheorghe Păun in [6] introduced membrane systems (which soon afterwards were
called P systems), the way of applying the evolution rules in a maximally parallel
way was one of the intrinsic features of this new model. Yet although biological
processes in living organisms happen in parallel, they are not synchronized by a
universal clock as assumed in the original model of membrane system, instead
many processes involve several objects in parallel, but the processes themselves
are carried out in an asynchronous way, which feature formally can be captured
by letting these processes happen in a sequential/unsynchronized way.

Many variants of P systems have been investigated so far (see [7] for a com-
prehensive overview as well as [8] for the actual state of research). For a first
overview of several examples of sequential P systems we refer to [4]. Most re-
cently, some new results on P systems working in the sequential mode were
elaborated in [5] (asynchronous P systems) as well as in [1] (P systems operating
in sequential mode). We assume the reader to be somehow familiar with the
original definitions and explanations given for the models considered in [7].

The rest of the paper is organized as follows: In the next section, we start with
introducing a general model for grammars, recall some notions for string gram-
mars and array grammars in the general setting used in this paper, and finally
define matrix grammars and graph-controlled grammars. In the third section,

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 188–199, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



P Systems Working in the Sequential Mode on Arrays and Strings 189

we define a general model of P systems working in the sequential mode (sequen-
tial P systems for short) which allows us to consider both array productions as
well as string productions; moreover, we illustrate the definition by giving an
example with context-free string productions. For matrix grammars with and
without appearance checking working on arrays and strings, respectively, a spe-
cial normal form (we call it activator normal form) is elaborated in the fourth
section. In the fifth and sixth section, we show that sequential P systems with-
out/with priorities as introduced in this paper allow for the characterization
of matrix grammars without/with appearance checking for different variants of
context-free array productions as well as different variants of context-free string
productions. A short summary of the results obtained in this paper as well as
an outlook to future research conclude the paper.

2 Definitions

The set of integers is denoted by Z, the set of positive integers by N. An alpha-
bet V is a finite non-empty set of abstract symbols. Given V , the free monoid
generated by V under the operation of concatenation is denoted by V ∗; the ele-
ments of V ∗ are called strings, and the empty string is denoted by λ; V ∗ \ {λ} is
denoted by V +. For more details on formal language theory we refer to [2] and
[10].

2.1 Grammars

As we deal with various types of objects and grammars in the following, we first
introduce a general model of a grammar:

A grammar G is a construct

(O,OT , P,=⇒G, w) where

– O is the set of objects;
– OT ⊆ O is the set of terminal objects;
– P is a finite set of productions;
– =⇒G⊆ O ×O is the derivation relation of G induced by the productions in
P ;

– w ∈ O is the axiom.

The derivation relation =⇒G is obtained as the union of all =⇒p⊆ O × O,
i.e., =⇒G:=

⋃
p∈P =⇒p, where each =⇒p is a relation that we assume at least

to be recursive. The reflexive and transitive closure of =⇒G is denoted by =⇒∗
G.

The language generated by G is the set of all terminal objects (we also assume
v ∈ OT to be decidable for every v ∈ O) derivable from the axiom, i.e.,

L (G) = {v ∈ OT | w =⇒∗
G v} .

Depending on the components of G, especially with respect to different types
of productions, we consider different types of grammars. The family of languages
generated by grammars of type X is denoted by L (X) .
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2.2 String Grammars

Usually, a string grammar is defined as a construct (N,T, P, S) where

– N is the alphabet of non-terminal symbols;
– T is the alphabet of terminal symbols, N ∩ T = ∅;
– P is a finite set of productions of the form u → v with u ∈ V + and v ∈ V ∗,

where V := N ∪ T ;
– S ∈ N is the start symbol.

In the general notion of the preceding section, a string grammar now is rep-
resented as (V ∗, T ∗, P,=⇒G, S) where the derivation relation for u → v ∈ P
is defined as usual by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the
well-known derivation relation =⇒G for the string grammar G.

As special types of string grammars we consider string grammars with ar-
bitrary productions, context-free productions of the form A → v with A ∈ N
and v ∈ V ∗, and λ-free context-free productions of the form A → v with A ∈ N
and v ∈ V +, the corresponding types of grammars denoted by ENUM, CF,
and CF−λ, thus yielding the families of languages L (ENUM), i.e, the family
of recursively enumerable languages, as well as L (CF ) and L (CF−λ) , i.e., the
families of context-free and λ-free context-free languages, respectively.

2.3 Arrays and Array Grammars

In this subsection we introduce the basic notions for n-dimensional arrays and
array grammars (e.g., see [3], [9], [11]).

Let d ∈ N. Then a d-dimensional array A over an alphabet V is a func-
tion A : Zd → V ∪ {#}, where shape (A) =

{
v ∈ Zd | A (v) �= #

}
is finite

and # /∈ V is called the background or blank-symbol. We usually write A =
{(v,A (v)) | v ∈ shape (A)}.

The set of all d-dimensional arrays over V is denoted by V ∗d. The empty
array in V ∗d with empty shape is denoted by Λd. Moreover, we define V +d =
V ∗n \ {Λd}.

Let v ∈ Zd, v = (v1, . . . , vd) . The translation τv : Zd → Zd is defined by
τv (w) = w + v for all w ∈ Zd, and for any array A ∈ V ∗d we define τv (A), the
corresponding d-dimensional array translated by v, by (τv (A)) (w) = A (w − v)
for all w ∈ Zd. The vector (0, . . . , 0) ∈ Zd is denoted by Ωd.

A d-dimensional array production p over V is a triple (W,A1,A2) , where
W ⊆ Zd is a finite set and A1 and A2 are mappings from W to V ∪ {#} such
that shape (A1) �= ∅, shape (A1) = {v ∈ W | A (v) �= #}. We say that the array
B2 ∈ V ∗d is directly derivable from the array B1 ∈ V ∗d by the d-dimensional
array production (W,A1,A2) , i.e., B1 =⇒p B2, if and only if there exists a
vector v ∈ Zd such that B1 (w) = B2 (w) for all w ∈ Zd \ τv (W ) as well as
B1 (w) = A1 (τ−v (w)) and B2 (w) = A2 (τ−v (w)) for all w ∈ τv (W ), i.e., the
sub-array of B1 corresponding to A1 is replaced by A2, thus yielding B2.

A d-dimensional array grammar is a grammar(
(N ∪ T )∗d , T ∗d, P,=⇒G, w

)
where
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– N is the alphabet of non-terminal symbols;
– T is the alphabet of terminal symbols, N ∩ T = ∅;
– P is a finite set of array productions over V , V := N ∪ T ;
– =⇒G is the derivation relation induced by the array productions in P ac-

cording to the explanations given above, i.e., for arbitrary B1,B2 ∈ V ∗d,
B1 =⇒G B2 if and only if there exists a d-dimensional array production
p = (W,A1,A2) in P such that B1 =⇒p B2;

– {(v0, S)} with S ∈ N and v0 ∈ Zd is the start array (axiom).

A d-dimensional array production p = (W,A1,A2) in P is called

– #-context-free, if shape (A1) = {Ωd};
– context-free, if it is #-context-free and shape (A1) ⊆ shape (A2);
– strictly context-free, if it is context-free and shape (A2) = W.

A d-dimensional #-context-free array production p = (W,A1,A2) in the
following will be represented in the form A1 (Ωd) → A2 (Ωd) {(v,A2 (v)) | v ∈ U}
with U = W − {Ωd} .

An array grammar is said to be of type d-ENUMA, d-#-CFA, d-CFA, d-
SCFA, respectively, if every array production in P is of the corresponding type,
i.e., a d-dimensional arbitrary, #-context-free, context-free, or strictly context-
free array production, respectively. The corresponding families of d-dimensional
array languages of type X are denoted by L (X). L (d-ENUMA) is the family
of recursively enumerable d-dimensional array languages.

2.4 Matrix Grammars

A matrix grammar with appearance checking (with ac for short) GM of type X
is a construct

(O,OT , P,=⇒G, w,M,F )

where G = (O,OT , P,=⇒G, w) is a grammar of type X, M is a finite set of finite
sequences of productions (an element of M is called a matrix ), and F ⊆ P. For
a matrix mi = [mi,1, . . . ,mi,ni

] in M and v, u ∈ O we define v =⇒mi
u if and

only if there are w0, w1, . . . , wni
∈ O such that w0 = v, wni

= u, and for each
j, 1 ≤ j ≤ ni,

– either wj−1 =⇒mi,j
wj according to =⇒G,

– or mi,j is not applicable to wj−1 according to =⇒G, wj = wj−1, mi,j ∈ F .

The language generated by GM is

L (GM ) = {v ∈ OT | w =⇒mi1
w1 . . . =⇒mik

wk, wk = v,

wj ∈ O, mij
∈ M for 1 ≤ j ≤ k, k ≥ 1

}
.

The matrix grammar GM is said to be of type MATac; it is said to be of type
MAT - to be without appearance checking (without ac) - if F = ∅. The corre-
sponding families of languages are denoted by L (X-MATac) and L (X-MAT ),
respectively.
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2.5 Graph-Controlled Grammars

A graph-controlled grammar GC of type X is a construct

(O,OT , P,=⇒G, w,R, Lin, Lfin)

where G = (O,OT , P,=⇒G, w) is a grammar of type X, R is a finite set of
rules r of the form (l (r) : p (l (r)) , σ (l (r)) , ϕ (l (r))), where l (r) ∈ Lab (GC),
Lab (GC) being a set of labels associated (in a one-to-one manner) with the
rules r in R, p (l (r)) ∈ P , σ (l (r)) ⊆ Lab (GC) is the success field of the rule
r, and ϕ (l (r)) ⊆ Lab (GC) is the failure field of the rule r; Lin ⊆ Lab (GC) is
the set of initial labels, and Lfin ⊆ Lab (GC) is the set of final labels. For r =
(l(r) : p (l (r)) , σ (l (r)) , ϕ (l (r))) and v, u ∈ O we define (v, l (r)) =⇒GC

(u, k) if
and only if

– either p (l (r)) is applicable to v, v =⇒G u, and k ∈ σ (l (r)),
– or p (l (r)) is not applicable to v, u = v, and k ∈ ϕ (l (r)).

The language generated by GC is

L (GC) = {v ∈ OT | (w0, l0) =⇒GC
(w1, l1) . . . =⇒GC

(wk, lk) , k ≥ 1,
wj ∈ O and lj ∈ Lab (GC) for 0 ≤ j ≤ k,
w0 = w, wk = v, l0 ∈ Lin, lk ∈ Lfin} .

The graph-controlled grammar GC is said to be of type GCac; it is said to
be of type GC - to be without appearance checking (without ac) - if ϕ (l) = ∅
for all l ∈ Lab (GC) . The corresponding families of languages are denoted by
L (X-GCac) and L (X-GC), respectively.

Theorem 2.5.1. For any arbitrary type X,

L (X-MAT ) ⊆ L (X-GC) and L (X-MATac) ⊆ L (X-GCac) .

3 A General Model of Sequential P Systems

The reader is assumed to be familiar with the main features and variants of the
basic models of P systems, we especially refer to [7] and the original papers cited
there. The most important feature is the membrane structure, which usually is
represented by pairs of matching brackets and forms a tree structure.

In this section we define the general model of P systems working in the se-
quential mode that we will consider with array and string productions in this
paper; moreover, we illustrate the definition by giving an example of a sequen-
tial P system with priorities generating the string language

{
a2n | n ≥ 1

}
using

context-free productions in three membranes.

A sequential P system with priorities of type X (an X-sP(pri) system for
short) is a construct

Π = (O,OT , P,=⇒, w, μ,Rμ, ρμ) where
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– G = (O,OT , P,=⇒, w) is a grammar of type X,
– O is the set of objects;
– OT ⊆ O is the set of terminal objects;
– P is a finite set of productions;
– =⇒ is the derivation relation of the grammar G;
– w ∈ O is the axiom of the underlying grammar G and is put as initial object

into the skin membrane;
– μ is the membrane structure of Π; usually, we shall label the membranes

with 1, ..., n in a bijective way; the outermost membrane is always labelled
by 1 and is called the skin membrane;

– Rμ ( = (R1, ..., Rn)) is a function assigning a finite set of rules to each region
i of the membrane structure μ, where each rule is of the form p (tar) for some
production p from P and tar ∈ {here, in, out} ;

– ρμ ( = (ρ1, ..., ρn)) is a function assigning a priority relation for the rules in
Ri to each region i of the membrane structure μ.

A derivation in Π works as follows: we start with the axiom w in the skin
membrane, whereas all other membranes are empty. At any stage of the deriva-
tion, there will be exactly one object v in some region i; to this object, a rule
p(tar) from Ri can only be applied if no other rule of higher priority according to
the priority relaion ρi could be applied, too, where applying p (tar) to v means
applying p to v according to the derivation relation =⇒ and moving the result
according to the target tar, where tar = here keeps the result in the current
membrane i (and we shall usually omit this target here), tar = in moves the
result into a membrane j inside membrane i, and tar = out moves the result
into the membrane j outside membrane i. In this paper, we shall not allow an
object to move outside the skin membrane, hence for all rules in R1 the target
out is not allowed.

All terminal objects from OT ever appearing at any step in any membrane
contribute to the language L (Π) generated by Π. The family of languages
generated by X-sP(pri) systems (with membrane structure μ) is denoted by
L (X-sP (pri)) (L (X-sP (μ, pri)), respectively). If all priority relations in an X-
sP(pri) system are empty, we call it an X-sP system and denote the correspond-
ing families of languages generated by X-sP systems (with membrane structure
μ) by L (X-sP ) (L (X-sP (μ)), respectively).

Example 3.1 Consider the sequential P system working on strings

Π =
(
{a,B,C}∗ , {a}∗ , P,=⇒, B, [1[2[3 ]3]2]1, R1, R2, R3, ρ1, ρ2, ρ3

)
where ({a,B,C} , {a} , P,=⇒, B) is a context-free string grammar with

P = {B → CC,C → B,C → a} and
R1 = {C → B (here) , B → CC (in)} ,
R2 = {B → CC (here) , C → B (out) , C → a (in)} ,
R3 = {C → a (here)} ,
ρ1 = {C → B (here) > B → CC (in)} ,
ρ2 = {B → CC (here) > C → B (out) , B → CC (here) > C → a (in)} ,
ρ3 = ∅.
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By repeatedly applying the rule B → CC (here) in membrane 2 the number
of symbols is doubled, the first doubling being already made when moving the
string from membrane 1 to membrane 2 by applying the rule B → CC (in) ,
which according to the priority relation ρ1 is only possile when the current
string consists of symbols B only. After doubling all symbols B to CC, the string
consisting of symbols C only now allows the application of the rule C → B (out)
or of the rule C → a (in) . C → B (out) sends the string out into the skin
membrane, where every symbol C is replaced by a symbol B by repeatedly
applying the rule C → B (here) . On the other hand, C → a (in) sends the
string into membrane 3, where after applying C → a (here) as long as possible
we finally obtain a string consisting of terminal symbols a only. According to
these explanations it becomes obvious that L (Π) =

{
a2n | n ≥ 0

}
, i.e.,{

a2n | n ≥ 0
}
∈ L (CF−λ-sP ([1[2[3 ]3]2]1, pri)) .

4 Matrix Grammars in Activator Normal Form

For matrix grammars of array types n-#-CFA, n-CFA, and n-SCFA as well
as of string types CF and CF−λ we prove a special normal form, where after
each application of a matrix exactly one position in the array/string is marked.
Due to lack of space, we cannot give detailed proofs of the theorems stated in
this section.

4.1 Working on Arrays

A matrix grammar
(
(N ′′ ∪ T )∗d , T ∗d, P,=⇒G, w,M,F

)
of array types d-#-

CFA, d-CFA, and d-SCFA, respectively, is said to be in activator normal
form ( anf for short) if N ′′ = N ′ × L ∪ N for two disjoint sets N ′ and L with
N ′ = N∪T (∪{#}) , w ∈ N×L, and every matrix in M is of one of the following
forms:

1. [(X, r) → (Y, s) {(v, Yv) | v ∈ U}] , X ∈ N, Y ∈ N ′, Yv ∈ N ∪ T ∪ {#} for
v ∈ U, r, s ∈ L;

2. [(X → (X, r) , (Y, r) → Y )] , X ∈ N, Y ∈ N ′, r ∈ L;
3. [(a, r) → a] , a ∈ T (∪{#}) , r ∈ L;
4. [X → H {(v, Yv) | v ∈ U} , (Y, r) → (Y, s)] , Y ∈ N ′, Yv ∈ N ∪ T ∪ {#} for

v ∈ U, r, s ∈ L, X,H ∈ N, where H is a trap symbol, i.e., H cannot evolve
any more.

The rules of type 4 only appear in the case of a matrix grammar with ac, i.e.,
if F �= ∅. Moreover, the notation (∪{#}) indicates that we have to take # into
account only for the case of type d-#-CFA.

Theorem 4.1.1. For any matrix grammar without/with ac of type X, we can
effectively construct an equivalent matrix grammar without/with ac in anf of
the same type, for any X ∈ {d-#-CFA, d-CFA, d-SCFA} .
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Proof. Given any matrix grammar G′ without/with ac of type X, the main idea
is to construct the corresponding graph-controlled grammar GM according to
Theorem 2.5.1 and then to simulate GM by a matrix grammar G without/with
ac in anf of the same type X. The set L in G then corresponds to the set of
labels of the control graph of GM , i.e., we keep track of the current label r
in GM by the second component in the activated symbol (X, r) . Matrices of
type 1 simulate the corresponding successful applications of productions in GM ,
whereas matrices of type 4 simulate the failure case. Matrices of type 3 are to
be used in the last step of a derivation in G, and matrices of type 2 allow the
activator, i.e., the current label, to move around within the underlying array.
Following these explanations, G can be constructed from G′ via GM .

4.2 Working on Strings

A matrix grammar
(
(N ′′ ∪ T )∗ , T ∗, P,=⇒G, w,M,F

)
of string types CF and

CF−λ, respectively, is said to be in activator normal form ( anf for short) if
N ′′ = N ′ × L ∪ N for two disjoint sets N ′ and L with N ′ = N ∪ T (∪{λ}) ,
w ∈ N × L, and every matrix in M is of one of the following forms:

1. [(X, r) → (Y, s)Y1...Yk] , X ∈ N, Y ∈ N ′, Y1, ..., Yk ∈ N ∪ T for 1 ≤ i ≤ k,
k ≥ 0, r, s ∈ L;

2. [(X → (X, r) , (Y, r) → Y )] , X ∈ N, Y ∈ N ′, r ∈ L;
3. [(a, r) → a] , a ∈ T (∪{λ}) , r ∈ L;
4. [X → HY1...Yk, (Y, r) → (Y, s)] , Y ∈ N ′, Y1, ..., Yk ∈ N ∪ T for 1 ≤ i ≤ k,

k ≥ 0, r, s ∈ L, X,H ∈ N, where H is a trap symbol, i.e., H cannot evolve
any more.

The rules of type 4 only appear in the case of a matrix grammar with ac,
i.e., if F �= ∅. Moreover, the notation (∪{λ}) indicates that we have to take the
empty string λ into account only for the case of type CFA.

Theorem 4.2.1. For any matrix grammar without/with ac of type X, we can
effectively construct an equivalent matrix grammar without/with ac in anf of
the same type, for any X ∈ {CF,CF−λ} .
Proof. As in the proof of Theorem 4.1.1, the main idea is to simulate the
corresponding graph-controlled grammar by the matrix grammar without/with
ac in anf. Instead of considering #-context-free array productions of the form
X → Y {(v, Yv) | v ∈ U} we now have to deal with context-free string produc-
tions of the form X → Y Y1...Yk, yet this makes no difference for the main parts
of the construction.

5 The Generative Power of Sequential P Systems
Without Priorities

Using the activator normal form for matrix grammars elaborated in the preceding
section we now are able to show that sequential P systems without priorities
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generate the same families of languages as matrix grammars without ac in the
case of array grammars of types d-#-CFA, d-CFA, and d-SCFA as well as in
the case of string grammars of types CF and CF−λ.

5.1 Working on Arrays

Theorem 5.1.1. For any X ∈ {d-#-CFA, d-CFA, d-SCFA} ,
L (X-MAT ) = L (X-sP ([1[2[3 ]3]2]1)).

Proof. Let the array language L ∈ L (X-MAT ) be given by a matrix grammar
in anf

(
(N ′′ ∪ T )∗d , T ∗d, P,=⇒G, w,M,F

)
according to Theorem 4.1.1. Then

we construct the corresponding X-sP ([1[2[3 ]3]2]1) system Π as follows:

Π =
(
O′, T ∗d, P ′,=⇒, w, [1[2[3 ]3]2]1, R1, R2, R3

)
;

O′ =
(
N ′ × L ∪N ′ × L× L ∪ N̄ ′ × L× L ∪N ∪ T

)∗d ;

P ′ contains all productions from P as well as all the new productions in-
troduced in the sets of rules R1, R2, and R3, which allow for directly sim-
ulating the matrices [(X, r) → (Y, s) {(v, Yv) | v ∈ U}] and [(a, r) → a] in
the first membrane, whereas for moving the activator to another posi-
tion, i.e., for simulating a matrix [(X → (X, r) , (Y, r) → Y )] , we also
need the other two membranes to synchronize the change:

R1 = {(X, r) → (Y, s) {(v, Yv) | v ∈ U} (here) |
[(X, r) → (Y, s) {(v, Yv) | v ∈ U}] ∈ M}

∪ {(a, r) → a (here) | [(a, r) → a] ∈ M}
∪ {X → (X, r, r) (in) | [(X → (X, r) , (Y, r) → Y )] ∈ M} ,

R2 = {(Y, r) →
(
Ȳ , r, r

)
(in) , (X, r, 0) → (X, r) (out) ,(

Ȳ , r, i
)
→

(
Ȳ , r, i− 1

)
(in) |

[(X → (X, r) , (Y, r) → Y )] ∈ M, 1 ≤ i ≤ r},
R3 = (X, r, i) → (X, r, i− 1) (out) ,

(
Ȳ , r, 0

)
→ Y (out) |

[(X → (X, r) , (Y, r) → Y )] ∈ M, 1 ≤ i ≤ r}.
For the inverse inclusion ⊇, we just mention the main idea of the proof:

according to Theorem 4.1.1, we may simulate the given X-sP system Π by a
graph-controlled grammar of the corresponding type, where the paths in the
control graph reflect the movements of the underlying array according to the
targets in the rules of Π.

In the case of one- and two-dimensional arrays the theorem proved above
even allows for a characterization of recursively enumerable array languages by
sequential P systems without using priorities:

Theorem 5.1.2. For any d ∈ {1, 2} ,
L (d-#-ENUMA) = L (d-#-CFA-sP ([1[2[3 ]3]2]1)).

Proof. The equality L (d-#-ENUMA) = L (d-#-CFA-MAT ) is well-known,
e.g., see [3]. The claim now immediately follows from Theorem 5.1.1.
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5.2 Working on Strings

Theorem 5.2.1. For any X ∈ {CF,CF−λ} ,

L (X-MAT ) = L (X-sP ([1[2[3 ]3]2]1)).

Proof. We can use a similar construction as the one given in the proof of
Theorem 5.1.1, i.e., the proof follows from the proof of Theorem 5.1.1 in the
same way as the proof of Theorem 4.1.2 followed from the proof of Theo-
rem 4.1.1.

6 The Generative Power of Sequential P Systems with
Priorities

Sequential P systems with priorities generate the same families of languages as
matrix grammars with ac in the case of array grammars of types d-#-CFA,
d-CFA, and d-SCFA as well as in the case of string grammars of types CF and
CF−λ.

6.1 Working on Arrays

We first show that when using priorities on the rules only two membranes are
needed for simulating matrix grammars without ac by the corresponding sequen-
tial P systems:

Theorem 6.1.1. For any X ∈ {d-#-CFA, d-CFA, d-SCFA} ,

L (X-MAT ) ⊆ L (X-sP ([1[2 ]2]1, pri)).

Proof. Consider the X-sP system without priorities constructed in the proof of
Theorem 5.1.1. We can construct an equivalent X-sP system with priorities and
only two membranes: first we move all rules from membrane 3 into membrane 1
thereby changing each target indication from out to in; moreover, for every rule
X → (X, r, r) (in) we add α → H (in) in R1 as a rule with higher priority (with
repect to ρ1) for every non-terminal symbol α of the form (Y, s, j) and

(
Ȳ , s, j

)
,

where H is a new non-terminal symbol (a trap symbol, which cannot evolve any
more).

When allowing priorities, in sum we even get a characterization of matrix
grammars with ac by the corresponding sequential P systems:

Theorem 6.1.2. For any X ∈ {d-#-CFA, d-CFA, d-SCFA} ,

L (X-sP ([1[2 ]2]1, pri)) = L (X-MATac).

Proof. For proving the inclusion ⊇, consider the X-sP system with priorities
constructed in the proof of Theorem 6.1.1 and, for every matrix of the form
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[X → H {(v,#) | v ∈ U} , (Y, r) → (Y, s)]

(where H is the trap symbol), add these two rules in R1 as well as the priority

X → H {(v,#) | v ∈ U} > (Y, r) → (Y, s)

to ρ1. The details of this construction as well as the proof of the inverse inclusion
are rather obvious and therefore omitted.

Hence, even for arbitrary d ∈ N we now obtain the following characterization
of L (d-ENUMA):

Corollary 6.1.3. For any d ∈ N,

L (d-ENUMA) = L (d-#-CFA-sP ([1[2 ]2]1, pri)).

6.2 Working on Strings

The following results are immediate consequences of the constructions given
for the results obtained in subsection 6.1 and the corresponding results from
subsection 5.2.

Theorem 6.2.1. L (CF−λ-sP ([1[2 ]2]1, pri)) = L (CF−λ-MATac)

As L
(
CF -MATλ

ac

)
= L (ENUM) (see [2]), we even obtain a characterization

of recursively enumerable string languages by sequential P systems with priorities
using context-free string productions in only two membranes:

Theorem 6.2.2. L (CF -sP ([1[2 ]2]1, pri)) = L
(
CF -MATλ

ac

)
= L (ENUM)

Observe that this result is already optimal with respect to the number of
membranes in CF -sP (pri) systems being able to generate any arbitrary string
language, as L (CF -sP ([1 ]1, pri)) only corresponds with the family of string
languages generated by ordered grammars, which family is strictly included in
L (ENUM) , e.g., see [2].

7 Summary and Future Research

We have investigated a specific variant of P systems where the rules are not
applied in the maximally parallel way, but instead in a sequential/asynchronous
way. For related results of sequential/asynchronous P systems working on string
objects and on symbol objects, we refer to [5] and [1].

The model of sequential P systems with/without priorities introduced in
this paper allowed for the characterization of matrix grammars with/without
appearance checking for different variants of context-free array productions as
well as different variants of context-free string productions.

Many other models of P systems, e.g., one may simply consider some variants
of the big variety of models of membrane systems described in the book of
Gheorghe Păun, [7], deserve to be investigated for the case of the sequential
application of rules, too, as the sequential/asynchronous way for the application
of rules promises interesting new results and applications for the future.
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Abstract. A new solution for the Firing Squad Synchronization Prob-
lem (FSSP) on two-dimensional square arrays is presented and its cor-
rectness is demonstrated in detail. Our new solution is time as well as
communication optimal (the so-called minimal time 1-bit solution). In
addition, it is shown that the technique developed and the results ob-
tained allow also to solve in optimal time & communication FSSP for
several other variants of this problem on networks shaped as square grids
(with four Generals), square toruses and rings.

1 Introduction

Cellular automata, as networks of identical finite automata (cells), are perhaps
the most fascinating model of computation. In any case, no other model of
computation has received so far so concentrated attention and no other model
of computation has been used to deal with such an enormous variety of problems
from all areas of science, technology and applications. Recent books by Wolfram
[20, 21] and Ilachinski [4] demonstrate in an impressive way the richness of this
model and its broad use in general. Surprising capability of cellular automata,
even with very small cells, to synchronize themselves very fast is one of the
most peculiar and at the same time most important properties of this model –
introduced by von Neumann about 50 years ago.

Firing Squad Synchronization Problem, originally formulated by Myhill
(1957), is one of the most famous synchronization problems for cellular au-
tomata. In the original formulation, we are given a line of n identical cells (finite
state machines) that work synchronously at discrete time steps, initially a dis-
tinguished cell (called the General) starts computing while all others are in a
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also supported by the grant GAČR, 201/04/1153.
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quiescent state; at each time step any cell sends/receives to/from its neighbours
some information about their state at the preceding time: the problem is to let
all cells in the line enter the same state for the first time and at the very same
instant. This problem has been investigated for various underlying communi-
cation graphs: for one-dimensional arrays, called Lines here, and rings (Culik
[2]), for one-dimensional paths in two-dimensional arrays (Kobayashi [8]), for
two-dimensional and more dimensional arrays, especially squares, and toruses
(Szwerinski [17], Kobayashi [7]), for arbitrary graphs with all nodes of the same
degree and for classes of graphs (see, for example, Roka [15] for Cayley graphs),
for various number and positions of Generals, for various restrictions on the
types of underlying cellular automata, for example reversible, in a special way,
(see Imai and Morita [5]), or with a number-conserving property (Imai et al. [6]),
for the case of minimal capacities of communication links (Mazoyer [12], Umeo
et al. [18]) and also for the case that some of the underlying finite automata are
faulty to some extent (Umeo et al. [14]) and so on. For several of these variants
ingenious and beautiful solutions have been found.

Of a special interest is always to find solutions that are minimal with respect
to one or, better, simultaneously with respect to several important characteristics
(resources) – especially with respect to time, size (number of states or number
of transitions) or the capacity of the communication links between neighbouring
cells.

Concerning the minimal time, Minsky [13] has shown that 2n− 1 is a lower
bound and Goto [3], Waksman [19] and Balzer [1] gave the minimal time solution
for the FSSP on one-dimensional arrays of n automata. The argument in this
case for the lower bound on synchronization time is very simple: time 2n− 1 is
needed for a signal from the General at one corner of the array (the cell activated
by an external intervention) to reach the last soldier and to come back to the
General.1 Using this argument it would seem that, for the case of two dimensional
n× n arrays with the General in a corner, the minimal synchronization time is
4n − 3 because this is the time needed for a signal from the General to reach
the most distant soldier and come back. Surprisingly, this intuition turned out
to be wrong and, as shown by Shinar [16], the minimum synchronization time
in this case is just 2n − 1. The basic idea how to achieve synchronization in
such a short time is very simple and beautiful: at time 2i−1 the signal from the
General can reach the i-th diagonal cell and initiates separate synchronization of
one-dimensional sub-row and sub-column arrays of n− i+1 cells in the topmost
row and leftmost column of the sub-square with diagonal cell (i,i) in the left-top
corner as a new General (see Figure 1). The synchronization on such lines can be
done in time 2(n− i)+1 using the optimal time solution for the one-dimensional

1 It is important to make clear that when discussing synchronization we express time
by the overall number of configurations used. In other words, the initial configuration
corresponds to time 1. This is, of course, not the only way to count time that is
used in the literature. Sometimes the number of steps is counted which is one less
than the number of configurations. The reader should realize the existence of these
unfortunate differences.
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i−th sub−square

i−th sub−column

i−th sub−row

Fig. 1. The splitting of the n × n array processors in Shinar’s solution

basic variant of the FSSP. This is the first key idea used also in our solution of
FSSP on Squares.

Concerning the minimal communication (1-bit) solution, a clever and elab-
orated simultaneously minimal time and minimal communication solution, for
one-dimensional array, is due to Mazoyer [12]. Details of Mazoyer’s reasoning
about the correctness of his solution are not always easy to follow and handle
formally, but Mazoyer provides also less formal, but quite clear illustrations and
demonstrations, also through space-time diagrams, of his solution. Main proper-
ties of his solution are clearly summarized in [11, 12]. In designing our solution,
we have exploited some of these properties that therefore become crucial in the
correctness proof of our solution.

Minimal (that is 1-bit inter-cell) communication cellular automata are of a
special interest because they represent one of the less powerful and simplest
models of cellular automata, especially for synchronization tasks. Such cellular
automata are then handy primitives for more complex synchronization tasks.

It is quite natural to try to combine the ideas of Shinar’s and Mazoyer’s
solutions to get simultaneously a minimal time and minimal communication links
solution for the FSSP on two-dimensional square arrays. However, it does not
seem to be a simple task to embed Mazoyer’s solution in the Shinar’s algorithm
maintaining both minimal time and minimal communication in the solution.
In fact, in addition to the problems coming from both separate tasks, a new
non-trivial problem is that of achieving at the right time and without time
delays an isolation of the sub-rows and sub-columns that need to be synchronized
separately, using only one-bit communication links between neighbouring cells.
(Such an isolation is not hard, in principle, if no restriction on the capacity of
inter-cell communications is given). It is even far from obvious that this can be
done, indeed.

In the literature, solutions to the FSSP are either presented in full detail, by
giving transition tables, or solutions are just sketched, and very rarely proofs of
correctness are carried over. In this paper, we try to find a compromise between
too informal and too formal approaches to the description of solutions and of
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their correctness. This has turned out, we think, not only possible, to the large
extent due to a very detailed presentation and illustration of Mazoyer’s solution
in his paper, but also stimulating and rewarding. Indeed, we could use the in-
sights obtained to solve a variety of other FSSPs for toruses and rings as they
are dealt with in Section 5.

The idea to adopt Shinar’s idea also to the minimal communication FSSP
on Squares has appeared first in La Torre et al. [9], but not sufficiently worked
out. An important step has been done by Umeo at al. [18]. They reported a
(different) way to construct an almost optimal solution (with time 2n) for the
FSSP on Squares with one-bit inter-cell communications, for both standard left-
corner position of the General and also for an arbitrary position of the General.
However, instead of providing a detailed description and a proof of correctness of
their solution, they reported successful testing of their solution for 2 ≤ n ≤ 1000.
Our solution therefore not only closes the gap between known upper and lower
bounds, but we present the basic idea in a way that its application to other
underlying interconnection structures is then quite straightforward, as demon-
strated later.

2 Models and Preliminaries

We deal with models of cellular automata consisting of identical finite automata
interconnected into a line, a ring, a two-dimensional array and a torus. All partic-
ular finite automata of a cellular automata are usually considered to be identical
(and those that are on a border of the interconnection structure are assumed
to get on the sides with no neighbour from the environment always a special
signal(s) that allow(s) them to recognize their special position). Another way
to deal with such an inhomogeneity, that will be followed in this paper, is to
consider several types of the underlying finite automata distinguished by their
position in the underlying interconnection structure - that is by the number and
position of the inter-cell interconnections.

Any cellular automaton works in discrete steps and at each unit of time a
state of any of its finite automaton is determined by its former state and signals
received from its neighbours and from the environment (if any). A configura-
tion of a cellular automaton is an assignment of states to its particular finite
automata.

In the case of the FSSP, we assume that the set of states of the finite automata
contains always special states G (General), λ (the sleeping state) and F (the
firing state). We assume the sleeping state to have two basic properties.

1. If an automaton is in the sleeping state and receives only inputs 0, then it
stays in the sleeping state and outputs 0 on all its output links;

2. no automaton ever goes from a non-sleeping state into the sleeping state.

If an automaton goes from the sleeping state to a non-sleeping state it is
considered to be awakened. From the second property above it follows that if an
automaton gets awakened it never starts to sleep again.
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To consider FSSP, it is assumed that in the initial configuration some pre-
determined cells are in the state G, all the others are in the sleeping state λ
and the goal of the synchronization is that at some time step all cells come
simultaneously and for the first time, to the firing state F .

In the following we deal with FSSP for cellular automata with the following
underlying interconnection networks (graphs).

– One-dimensional networks:
• Line: a one-dimensional array as underlying graph with n cells (num-

bered 1, . . . , n), and a General at the left end (at the cell 1).
• Two-End-Line: the underlying graph is again a Line but with a General

at each end (i.e., at cells 1 and n).
• Ring : with a one-dimensional circular array of n nodes as the underlying

graph (where nodes 1 and n are directly connected) and with a General
at the position 1.

– Two-dimensional networks:
• Square: a two-dimensional array of n × n nodes with a General in the

upper-leftmost corner (i.e., in the position (1, 1)).
• Four-End-Square: as the Square but with Generals at the four corners

(i.e., positions (1, 1), (1, n), (n, 1) and (n, n)).
• Torus: as a Square but with cells connected to form a torus (for example,

cell (1, 1) is directly connected also to the cell (1, n) and (n, 1) besides
(1, 2) and (2, 1) as in the Square).

The key result from [12] that will be used in the following is now formally
stated.

Theorem 1. There is a 1-bit solution for the FSSP on any Line of n cells at
time 2n− 1.

3 Lower Bounds on Synchronization Time for FSSP

Synchronization of a Line requires at least time 2n − 1. Intuitively, this is the
minimal time for the first cell to wake up all other cells and to get back the mes-
sage that all cells have been awakened. Recall that in any starting configuration
each cell, except the first one, is in the sleeping state and that the i-th cell can
not leave the sleeping state before time i. Thus all the cells are awakened at time
n, and the first cell gets this information back at time 2n− 1.

Regarding two-dimensional cellular automata, Shinar [16] has shown that the
minimum time for synchronizing a rectangular array of m × n cells is n +m +
max{n,m} − 2, but this time reduces to 2n − 1 in the case of a Square. The
following lemma summarizes this result.

Lemma 1. Every synchronization of a Line or a Square for FSSP requires at
least time 2n− 1.

The minimum time to synchronize a Ring is at least the time required by a
cell to send a message to all the other cells and to get back information from all
cells. The lower bound for Rings then obviously holds for Toruses as well.
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Lemma 2. Every synchronization of a Ring or of a Torus for FSSP requires
time at least n+ 1.

4 A New Method to Solve FSSP on Squares

In this section we present a new minimal time and minimal communication syn-
chronization of n × n square arrays with one General at the left-top corner.
As already mentioned, the basic idea is to apply Mazoyer’s minimal communi-
cation synchronization method for all sub-rows and sub-columns 2. The main
new problems are: to make each cell to learn, using only one-bit communica-
tion and without any delay, whether it is participating in the synchronization
process of a sub-row or of a sub-column or of both; to achieve that synchroniza-
tion of sub-rows and of sub-columns is done in minimal time; to arrange that
synchronization of one sub-line does not interfere with synchronization of other
sub-lines. We show that all this can be done in such a way that once a cell learns
that it participates in a synchronization process of a sub-row, it ignores inputs
from the upper and lower adjacent cells and, moreover, it does not send (non-
zero) outputs upwards or downwards. The same holds for cells participating in
synchronization of the sub-columns.

To show that the above way of synchronization can be carried out with 1-bit
inter-cell communication only and without any delay (with respect to a minimal
time synchronization), we use several simple properties of Mazoyer’s synchro-
nization, that capture situations during the first two steps of the synchroniza-
tion process. The properties, listed below, are implicitly contained in [12] and
explicitly formulated in [11] (Section 2.10.1). However, in order to facilitate the
understanding of our synchronization algorithm, let us observe that in Mazoyer’s
solution the first cell, the General, transmits the information about its name to
the second cell via two consecutive bits 1. The second cell, originally in the sleep-
ing state, learns, at time 3, after receiving two consecutive bits 1, that it is the
cell number 2. Also, any cell in the sleeping state that receives from the left a
bit 1 learns that it is the last awakened cell. Moreover, if it receives immediately
after that bit 0, it learns that its number in the line is greater than 2.

We summarize now the properties of Mazoyer’s synchronization that are used
in our solution.

P0 Each just awakened cell sends bit 1 to the not yet activated neighbouring
cell.

P1 The first cell knows that it is the General, and sends at time 2 bit 1 to its
right neighbour;

P2 Each cell number 1 < i ≤ n knows at time t = i that it is the last cell
awakened so far (since it receives bit 1 in the sleeping state);

2 In the following sub-row(i) is the line of cells from (i, i) to (i, n) and sub-column(j)
is the line of cells from (j, j) to (n, j). The term sub-line is used to refer either to a
sub-row or to a sub-column.
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P3 The second cell knows after 2 steps (that is at time 3) that it is the cell
number 2 (since it receives two consecutive bits 1 – the first while it is in
the sleeping state and the second immediately after that) and sends to the
right bit 0;

P4 Each cell number 2 < i < n knows at time t = i+1 that it is not the second
cell (since it receives first a bit 1 while in the sleeping state and immediately
after that bit 0);

P5 The last cell when awakened realizes that it is the cell number n (the last
cell).

Now we are ready to show:

Theorem 2. There is a 1-bit communication synchronization for FSSP on any
n× n Square at time 2n− 1.

Proof. Let the signal from the General (in the cell (1, 1)), start at time 1 and
move with maximal speed right and down through the Square, thus reaching
each cell (i, j) at time i + j − 1. This is done by letting each awakened cell to
send bit 1 right and down – in accordance with the behaviour of any awakened
cell in Mazoyer’s synchronization of the Line (see property P0).

Now we want that each awakened cell (i, j), for i < n and j < n, can play the
role either of a new General, if i = j, or of the second cell of a sub-row(i) (resp.
sub-column(j)) to be synchronized, if j = i+1 (resp. i = j+1), or of a different
cell of the sub-line. Since all such cells in Mazoyer’s solution behave in the same
way (it follows from the property P0 that at the next time step they all send bit
1 to their right neighbour), it is not needed at this stage to establish which of
the above three cases holds. To capture all that we say that each awakened cell
enters a “three options state” 3OP . According to the properties (P2-P4) listed
above, in the next step each cell in the state 3OP can determine exactly which
of the three above types of cells it is and it can do this behaving always as a
cell in Mazoyer’s synchronization would behave within the sub-line to which it
belongs. The rules are as follows.

1. If a cell in the state 3OP receives bits 0 both from above and from the left,
then it learns that it is a new General (that is a cell (i, i)). These bits need
to be sent by the second cells of the sub-row(i-1) and sub-column(i-1). From
that moment new General starts to ignore signals coming from the left and
from above. As an immediate output it sends bits 1 to the right and below
(see the property P1, this is in accordance with Mazoyer’s synchronization
algorithm for sub-row(i) and sub-column(i) starting from the cell (i, i)).

2. If a cell in the state 3OP receives bit 1 (resp. 0) from the left and bit 0 (resp.
1) from above, then it knows that it is neither a new General nor the cell
next to a new General in a sub-column (resp. sub-row) to be synchronized
(see properties P0 and P4). After that it will ignore inputs from the left
(resp. from above) and as output sends the bit 1 to the right (resp. below)
and bit 0 below (resp. to the right). That is, it starts to behave as a cell
i > 2 in Mazoyer’s solution along a sub-column (resp. a sub-row), and bit 1
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sent to the right (resp. below) is used by the neighbouring cell to determine
that it is not a new General of its sub-line.

3. If a cell in the state 3OP receives bits 1 both from above and from the left,
then it knows it is the second cell in its sub-line – for our considerations it
does not matter whether in a sub-row or a sub-column. As outputs it sends
0 in both directions, to the right and below (see the property P3). This way
it behaves again as a cell in Mazoyer’s solution, and communicates to its
neighbour in the next inner sub-line that it is the General of such a sub-line.

Let us add that those outputs of each cell that are not explicitly described
are similar to those of the corresponding sub-lines of Mazoyer’s solution.

Each cell belonging to the last row and column knows, due to the property P5,
that it is the last cell in a sub-line and behaves immediately (without entering
the 3OP state) as the last cell in Mazoyer’s solution. In particular, the cell (n, n)
will enter the firing state F when it is awakened.

To finish the proof let us note that each sub-line(i), whose length is n− i+1,
synchronizes in 2(n−i) steps after the cell (i, i) has been awakened at time 2i−1.
The overall synchronization is therefore obtained at time 2n− 1 (note that if a
synchronization requires time 2n− 1 then it makes 2n− 2 steps). ��

5 FSSP Solutions for Rings and Toruses

In this section we deal with minimal time and minimal communication syn-
chronizations for FSSP on circularly shaped networks. We start with the syn-
chronization of Rings of n cells. Later we discuss synchronization for FSSP on
Toruses of n× n cells.

5.1 One-Dimensional Networks

We obtain a minimal time synchronization for FSSP on a Ring by simulating a
minimal time and communication synchronization for FSSP on Two-End-Lines.
Such a synchronization can be designed by adapting Mazoyer’s minimal time
1-bit synchronization [12], as shown in the proof of the following lemma.

Lemma 3. There is a 1-bit communication synchronization of FSSP on Two-
End-Lines of n cells at time n.

Proof. A 1-bit synchronization for FSSP on Two-End-Lines of n cells can be
obtained by starting Mazoyer’s minimal time 1-bit synchronization for FSSP on
two Lines, with Generals at both ends. Thus imagine the Line as being split
into two halves: the first half is a Line from cell 1 to cell  (n + 1)/2! (with the
General at position 1) and the second half is a Line from cell n to cell -(n+1)/2.
(with the General at position n). Note that in case n is even the two Lines are
disjoint, otherwise they share the last cell. Moreover, each cell knows the sub-line
to which it belongs starting from the time it is awakened.

If n is odd, each sub-line is composed of exactly (n + 1)/2 cells and the
central cell of the original Line needs to behave as the last cell for both halves.
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Clearly, this can be easily done since the last cell in a solution sends/receives
only bits to/from its single neighbour. Thus, from Theorem 1 the total time to
synchronize each half is 2((n+ 1)/2) − 1, that is n.

If n is even, cells n/2 and n/2 + 1 are aware of being the central cells only
with one step delay since they are awakened. This has as a consequence that the
synchronization on each half gets delayed by 1 and thus by Theorem 1 the total
time to synchronize each half is (2(n/2) − 1) + 1. The overall synchronization
time is therefore again n. ��

We are ready now to deal with the FSSP on Rings. Note that the outcome
will be an improvement of the result presented in [2].

Theorem 3. There is a 1-bit communication synchronization of the FSSP on
any Ring of n cells in time n+ 1.

Proof. A FSSP on a Ring of n cells can be seen as the FSSP on Two-End-Line
of n+ 1 cells where cells 1 and n+ 1 both correspond to the cell 1 of the Ring.
From Lemma 3, there is a 1-bit communication synchronization of the FSSP for
Two-End-Line of n+ 1 cells at time n+ 1. Thus, we have the theorem. ��

5.2 Two-Dimensional Networks

In this section, we prove as the main result a tight upper bound on the 1-bit
synchronization for FSSP on networks of cells arranged as toruses. To show that,
we use the following result of interest by itself.

Lemma 4. There is a 1-bit communication synchronization for the FSSP on
Four-End-Squares of n× n cells in time n.

Proof. Consider a Square as consisting of n concentric “frames”, where the i-
th inner frame is formed by the four sub-lines (i, i) . . . (i, n − i + 1), (i, n − i +
1) . . . (n−i+1, n−i+1), (i, i) . . . (n−i+1, i) and (n−i+1, i) . . . (n−i+1, n−i+1),
see Figure 2.

Since the cells (1, 1), (1, n), (n, 1) and (n, n) are all Generals, the four lines
of the first frame can all synchronize in time n using Lemma 3. If we start
with the Generals in the four corners of the i-th frame, i ≤ -n/2., again by
Lemma 3, we can synchronize this frame at time n − 2(i − 1) (each sub-line of
the frame has exactly n − 2(i − 1) cells). Thus, to achieve the synchronization
of the Four-End-Square at time n we just need to have the corners of the i-th
frame entering the General at time 2i+1 (note that 2i+1 corresponds to time 1
of the synchronization on the frame, thus the total time is 2i+n−2i, that is n).
To obtain this, we can design a synchronization process that behaves similarly
to that we have constructed for the minimal time and minimal communication
synchronization of the FSSP on Squares in Section 4. All that can be clearly
done with one-bit communications and therefore we omit further details here.

��
Now it is easy to show the main result of this section.
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Fig. 2. The frames in a Square of n × n processors

Theorem 4. There is a 1-bit communication synchronization for FSSP on any
Torus of n× n cells at time n+ 1.

Proof. A synchronization for FSSP on a Torus of n×n cells at time n+1 can be
obtained by looking at the underlying interconnection graph as being split into
three parts: the first row, the first column and the remaining part of the array
– a sub-square of the size(n− 1) × (n− 1). By Theorem 3, the first row and the
first column can be synchronized in time n + 1. During these synchronizations
(in the first two steps) cells (2, 2), (2, n), (n, 2), (n, n) can enter new states that
can be seen as Generals of a Four-End-Square with (n− 1)× (n− 1) cells. Using
Lemma 4 and considering that this last synchronization starts with two steps
of delay, the overall synchronization time is n + 1. The technical problems to
cope with in designing this algorithm are all related to the limitation that each
cell can only send/receive 1-bit to/from each neighbouring cell at a time. One
can easily verify that it is possible to implement our algorithm using techniques
similar to those used in Section 4 for the synchronization of the Square, and thus
we omit further details here. ��

6 Conclusions and Open Problems

FSSP got so famous also for the fact that it is still an open problem to determine
even for the simplest case of the Line a solution with minimal time and minimal
size (in terms of states).3 Related problems are to minimize simultaneously time
and the number of transitions. These size-minimization problems are of interest

3 A beautiful result by Mazoyer [10] shows that minimal size for minimal time solution
is at most 6. By Balzer [1], it is at least 5 and the gap has not been resolved yet.
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also for the case of minimal time and communication solutions. They may be
quite difficult problems as the following facts indicate.4 Mazoyer’s 1-bit com-
munication solution for the Line has 56 states. The not-yet optimal solution in
[18] is reported to have 78 states and 208 transition rules for the General in one
end-line and 127 states and 405 transition rules for the General in an arbitrary
position of the line.

A natural task is to find an optimal time and communication solution also
for the case of arbitrary rectangular arrays. The following facts indicate that this
may be a much more difficult task. In case of the n×m array the lower bound,
established by Shinar, is m + n + max{m,n} − 3 steps and his upper bound
for the size is 28 states. Almost optimal solution in [18] has, for an arbitrary
position of the General 862 states and 2217 transition rules.

As we could see our combination of Mazoyer’s and Shinar’s solutions for two
quite different FSSP provides a way to solve several FSSP on one- and two-
dimensional arrays and their modifications. It would be interesting to see if our
approach can be used to achieve minimal time and 1-bit solutions also for arrays
with more than two dimensions and their variants.

Acknowledgments. We thank Margherita Napoli for many helpful discussions.
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Abstract. We consider the following definition (different from the stan-
dard definition in the literature) of “maximal parallelism” in the appli-
cation of evolution rules in a P system G: Let R = {r1, ...rk} be the set
of (distinct) rules in the system. G operates in maximal parallel mode if
at each step of the computation, a maximal subset of R is applied, and
at most one instance of any rule is used at every step (thus at most k
rules are applicable at any step). We refer to this system as a maximally
parallel system. We look at the computing power of P systems under
three semantics of parallelism. For a positive integer n ≤ k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal
subset of at most n rules in R to apply (this implies that no larger subset
is applicable).

≤ n-Parallel: At each step, nondeterministically select any subset of
at most n rules in R to apply.

n-Parallel: At each step, nondeterministically select any subset of
exactly n rules in R to apply.

In all three cases, if any rule in the subset selected is not applicable,
then the whole subset is not applicable. When n = 1, the three semantics
reduce to the Sequential mode.

We focus on two popular models of P systems: multi-membrane cat-
alytic systems and communicating P systems. We show that for these
systems, n-Max-Parallel mode is strictly more powerful than any of
the following three modes: Sequential, ≤ n-Parallel, or n-Parallel.
For example, it follows from the result in [7] that a maximally paral-
lel communicating P system is universal for n = 2. However, under the
three limited modes of parallelism, the system is equivalent to a vector
addition system, which is known to only define a recursive set. These
generalize and refine the results for the case of 1-membrane systems re-
cently reported in [3]. Some of the present results are rather surprising.
For example, we show that a Sequential 1-membrane communicating P
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system can only generate a semilinear set, whereas with k membranes, it
is equivalent to a vector addition system for any k ≥ 2 (thus the hierar-
chy collapses at 2 membranes - a rare collapsing result for nonuniversal
P systems). We also give another proof (using vector addition systems)
of the known result [6] that a 1-membrane catalytic system with only 3
catalysts and (non-prioritized) catalytic rules operating under 3-Max-
Parallel mode can simulate any 2-counter machine M . Unlike in [6], our
catalytic system needs only a fixed number of noncatalysts, independent
of M .

A simple cooperative system (SCO) is a P system where the only
rules allowed are of the form a → v or of the form aa → v, where a is a
symbol and v is a (possibly null) string of symbols not containing a. We
show that a 9-Max-Parallel 1-membrane SCO is universal.

1 Introduction

There has been a flurry of research activities in the area of membrane com-
puting (a branch of molecular computing) initiated five years ago by Gheorghe
Paun [13]. Membrane computing identifies an unconventional computing model,
namely a P system, from natural phenomena of cell evolutions and chemical re-
actions. Due to the built-in nature of maximal parallelism inherent in the model,
P systems have a great potential for implementing massively concurrent systems
in an efficient way that would allow us to solve currently intractable problems (in
much the same way as the promise of quantum and DNA computing) once future
bio-technology (or silicon-technology) gives way to a practical bio-realization (or
chip-realization).

The Institute for Scientific Information (ISI) has recently selected membrane
computing as a fast “Emerging Research Front” in Computer Science (http://esi-
topics.com/ erf/october2003.html). A P system is a computing model, which
abstracts from the way the living cells process chemical compounds in their
compartmental structure. Thus, regions defined by a membrane structure contain
objects that evolve according to given rules. The objects can be described by
symbols or by strings of symbols, in such a way that multisets of objects are
placed in regions of the membrane structure. The membranes themselves are
organized as a Venn diagram or a tree structure where one membrane may
contain other membranes. By using the rules in a nondeterministic, maximally
parallel manner, transitions between the system configurations can be obtained.
A sequence of transitions shows how the system is evolving. Various ways of
controlling the transfer of objects from a region to another and applying the
rules, as well as possibilities to dissolve, divide or create membranes have been
studied. P systems were introduced with the goal to abstract a new computing
model from the structure and the functioning of the living cell (as a branch of the
general effort of Natural Computing – to explore new models, ideas, paradigms
from the way nature computes). Membrane computing has been quite successful:
many models have been introduced, most of them Turing complete and/or able to
solve computationally intractable problems (NP-complete, PSPACE-complete)
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in a feasible time (polynomial), by trading space for time. (See the P system
website at http://psystems.disco.unimib.it for a large collection of papers in the
area, and in particular the monograph [14].)

As already mentioned above, in the standard semantics of P systems [13–15],
each evolution step of a system G is a result of applying all the rules in G in
a maximally parallel manner. More precisely, starting from the initial config-
uration, w, the system goes through a sequence of configurations, where each
configuration is derived from the directly preceding configuration in one step by
the application of a multi-set of rules, which are chosen nondeterministically.
For example, a catalytic rule Ca → Cv in membrane q is applicable if there is a
catalyst C and an object (symbol) a in the preceding configuration in membrane
q. The result of applying this rule is the evolution of v from a. If there is another
occurrence of C and another occurrence of a, then the same rule or another rule
with Ca on the left hand side can be applied. Thus, in general, the number of
times a particular rule is applied at anyone step can be unbounded. We require
that the application of the rules is maximal: all objects, from all membranes,
which can be the subject of local evolution rules have to evolve simultaneously.
Configuration z is reachable (from the starting configuration) if it appears in
some execution sequence; z is halting if no rule is applicable on z.

In this paper, we study a different definition of maximal parallelism. Let
G be a P system and R = {r1, ..., rk} be the set of (distinct) rules in all the
membranes. (Note that ri uniquely specifies the membrane the rule belongs
to.) We say that G operates in maximal parallel mode if at each step of the
computation, a maximal subset of R is applied, and at most one instance of
any rule is used at every step (thus at most k rules are applicable at any step).
For example, if ri is a catalytic rule Ca → Cv in membrane q and the current
configuration has two C’s and three a’s in membrane q, then only one a can
evolve into v. Of course, if there is another rule rj , Ca → Cv′, in membrane
q, then the other a also evolves into v′. Throughout the paper, we will use this
definition of maximal parallelism. Here, we look at the computing power of P
systems under three semantics of parallelism. For a positive integer n ≤ k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal subset
of at most n rules in R to

apply (this implies that no larger subset is applicable).
≤ n-Parallel: At each step, nondeterministically select any subset of at most

n rules in R to apply.
n-Parallel: At each step, nondeterministically select any subset of exactly n

rules in R to apply.

In all three cases, if any rule in the subset selected is not applicable, then the
whole subset is not applicable. When n = 1, the three semantics reduce to the
Sequential mode.

In the next four sections, we investigate the computing power of two popular
models of P systems with respect to the above semantics of parallelism – the
catalytic P systems and the communicating P systems.
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We should mention some related work on P systems operating in sequential
and limited parallel modes. Sequential variants of P systems have been studied,
in a different framework, in [5]. There, generalized P systems (GP-systems) were
considered and were shown to be able to simulate graph controlled grammars.
Our notion of limited parallelism seems to correspond to “cooperation modes”
in cooperating distributed grammar systems, investigated in [2].

Because of space limitation, many of the proofs are omitted here. They will
appear in the journal version of this paper.

2 Multi-membrane Catalytic Systems

2.1 Maximally Parallel CS

First we recall the definition of a catalytic system (CS). The membranes (regions)
are organized in a hierarchical (tree) structure and are labeled 1, 2, .., m for some
m, with the outermost membrane (the skin membrane) labeled 1. At the start
of the computation, there is a distribution of catalysts and noncatalysts in the
membranes (the distribution represents the initial configuration of the system).
Each membrane may contain a finite set of catalytic rules of the form Ca → Cv,
where C is a catalyst, a is a noncatalyst, and v is a (possibly null) string of
noncatalysts. When this rule is applied, the catalyst remains in the membrane the
rule is in, symbol a is deleted from the membrane, and the symbols comprising v
(if nonnull) are transported to other membranes in the following manner. Each
symbol b in v has a designation or target, i.e., it is written bx, where x can be
here, out, or inj . The designation here means that the object b remains in the
membrane containing it (we usually omit this target, when it is understood). The
designation out means that the object is transported to the membrane directly
enclosing the membrane that contains the object; however, we do not allow any
object to be transported out of the skin membrane. The designation inj means
that the object is moved into a membrane, labeled j, that is directly enclosed
by the membrane that contains the object.

It is important to note that our definition of catalytic system is different from
what is usually called catalytic system in the literature. Here, we do not allow
rules without catalysts, i.e., rules of the form a → v. Thus our systems use only
purely catalytic rules.

Suppose that S is a CS with m membranes. Let {a1, ..., an} be the set of
noncatalyst symbols (objects) that can occur in the configurations of S. Let
w = (w1, ..., wm) be the initial configuration, where wi represents the catalysts
and noncatlysts in membrane i. (Note that wi can be null.) Each reachable
configuration of S is an nm-tuple (v1, ..., vm), where vi is an n-tuple representing
the multiplicities of the symbols a1, ..., an in membrane i. Note that we do not
include the catalysts in considering the configuration as they are not changed
(i.e., they remain in the membranes containing them, and their numbers remain
the same during the computation). Hence the set of all reachable configurations
of S, denoted by R(S) is a subset of Nmn. The set of all halting reachable
configurations is denoted by Rh(S).
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2.2 Sequential CS

In a sequential multi-membrane CS, each step of the computation consists of an
application of a single nondeterministically chosen rule, i.e., the membrane and
rule within the membrane to apply are chosen nondeterministically. We show
below that sequential multi-membrane CS’s define exactly the semilinear sets.

We need the definition of a vector addition system. An n-dimensional vector
addition system (VAS) is a pair G = 〈x,W 〉, where x ∈ Nn is called the start
point (or start vector) and W is a finite set of transition vectors in Zn, where
Z is the set of all integers (positive, negative, zero). Throughout this paper, for
a w ∈ Zn we write w ≥ 0 to mean that w has only nonnegative components
(i.e., w ∈ Nn). The reachability set of the VAS 〈x,W 〉 is the set R(G) = {z |
for some j, z = x + v1 + ... + vj , where, for all 1 ≤ i ≤ j, each vi ∈ W and
x+v1+...+vi ≥ 0}. Note that R(G) is the smallest set satisfying the following two
properties: (1) x ∈ R(G), and (2) whenever z ∈ R(G), v ∈ W , and z + v ∈ Nn,
then z+v ∈ R(G). The halting reachability set Rh(G) = {z | z ∈ R(G), z+v �≥ 0
for every v in W}.

An n-dimensional vector addition system with states (VASS) is a VAS 〈x,W 〉
together with a finite set T of transitions of the form p → (q, v), where q and p
are states and v is in W . The meaning is that such a transition can be applied at
point y in state p and yields the point y+v in state q, provided that y+v ≥ 0. The
VASS is specified by G = 〈x,W, T, p0〉, where p0 is the starting state. Assuming
that the set of states of G is {p0, ..., pk} (for some k ≥ 0), the reachability set of
VASS G is R(G)={(i, w) ∈ Nn+1 | 1 ≤ i ≤ k, (pi, w) is reachable from (p0, x)}.
The halting reachability set Rh(G)={(i, w) | (i, w) ∈ R(G) and no transition is
applicable in (pi, w)}.

The reachability problem for a VASS (respectively, VAS) G is to determine,
given a vector y, whether y is in R(G). The equivalence problem is to determine
given two VASS (respectively, VAS) G and G′, whether R(G) = R(G′). Similarly,
one can define the reachability problem and equivalence problem for halting
configurations.

The following summarizes the known results concerning VAS and VASS [17,
8, 1, 9, 12]:

Theorem 1.

1. Let G be an n-dimensional VASS. We can effectively construct an (n + 3)-
dimensional VAS G′ that simulates G.

2. If G is a 2-dimensional VASS, then R(G) is an effectively computable semi-
linear set.

3. There is a 3-dimensional VASS G such that R(G) is not semilinear.
4. If G is a 5-dimensional VAS, then R(G) is an effectively computable semi-

linear set.
5. There is a 6-dimensional VAS G such that R(G) is not semilinear.
6. The reachability problem for VASS (and hence also for VAS) is decidable.
7. The equivalence problem for VAS (and hence also for VASS) is undecidable.
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Clearly, it follows from part 6 of the theorem above that the halting reacha-
bility problem for VASS (respectively, VAS) is decidable.

A communication-free VAS is a VAS where in every transition, at most one
component is negative, and if negative, its value is -1. Communication-free VAS’s
are equivalent to communication-free Petri nets, which are also equivalent to
commutative context-free grammars [4, 10]. It is known that they have effectively
computable semilinear reachability sets [4].

Our first result shows that a sequential CS is weaker than a maximally parallel
CS.

Theorem 2. Every sequential multi-membrane CS S can be simulated by a
communication-free VAS G, and vice versa.

Proof. Let S be an m-membrane CS with noncatalysts a1, ..., an. Suppose that
the start configuration of w = (w1, ..., wm) has k catalysts C1, ..., Ck. We may
assume, without loss of generality by adding new catalysts and rules if necessary,
that each Ci occurs at most once in wi (1 ≤ i ≤ m). Number all the rules in S
by 1, ..., s. Note that the rule number uniquely determines the membrane where
the rule is applicable.

We first transform S to a new system S′ by modifying the rules and the
initial configuration w. S′ will now have catalysts C1, ..., Ck, Q1, ..., Qs and
noncatalysts a1, ..., an, d1, ..., ds. The component wq of the initial configuration
in membrane q will now be wq plus each Qh for which rule number h is in
membrane q. The rules of S′ are defined as follows:

Case 1: Suppose that Cjai → Cjv is a rule in membrane q of S, and ai does
not appear in v with designation (target) here. Then this rule is in membrane q
of S′.

Case 2: Suppose that Cjai → Cja
t
iv is rule number r and t ≥ 1. Suppose that

this rule is in membrane q, with the target of each ai in at
i being here, and v does

not contain any ai with target here. Then the following rules are in membrane
q of S′: Cjai → Cjd

t
rv and Qrdr → Qrai. In the above rules, the target for ai

and each dr in the right-hand side of the rules is here.
Clearly, S′ simulates S, and S′ has the property that in each rule Xb → Xv

(where X is a catalyst, b is a noncatalyst, and v a string of noncatalysts), v does
not contain a b with target here. It is now obvious that each rule Xb → Xv in
S′ can be transformed to a VAS transition rule of mn+s components, where the
component of the transition corresponding to noncatalyst b is -1, and the other
components (corresponding to the target designations in v) are nonnegative.
Thus, the VAS is communication free.

Conversely, let G be a communication-free VAS. We construct a sequential 1-
membrane CS S which has one catalyst C, noncatalysts #, a1, ..., ak, and starting
configuration C#w, where w corresponds to the starting vector of G. Suppose
that (j1, ..., jm−1, jm, jm+1, ..., jk) is a transition in G.
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Case 1: jm = −1 and all other ji’s are nonnegative. Then the following rule is
in S: Cam → Caj1

1 ...a
jm−1
m−1 a

jm+1
m+1 ...a

jk

k .

Case 2: All the ji’s are nonnegative. Then the following rule is in S:
C# → C#aj1

1 ...a
jk

k .

Clearly, S simulates G. In fact, R(G) = R(S) × {1}. ��

Corollary 1.

1. If S is a sequential multi-membrane CS, then R(S) and Rh(S) are effectively
computable semilinear sets.

2. The reachability problem (whether a given configuration is reachable) for
sequential multi-membrane CS’s is NP-complete.

Since a communication-free VAS can be simulated by a sequential 1-
membrane CS (from conversely in the proof of Theorem 2), we have:

Corollary 2. The following are equivalent: communication-free VAS, sequential
multi-membrane CS, sequential 1-membrane CS.

2.3 CS Under Limited Parallelism

Here we look at the computing power of the multi-membrane CS under three
semantics of parallelism (namely, n-Max-Parallelism, ≤ n-Parallelism, and
n-Parallelism) defined in Section 1. We can show the following:

Theorem 3. For n = 3, a 1-membrane CS operating under the n-Max-
Parallel mode can define any recursively enumerable set. For any n, a multi-
membrane CS operating under ≤ n-Parallel mode or n-Parallel mode can be
simulated by a VASS.

2.4 3-Max-Parallel 1-Membrane CS

As noted above, it is known that a 3-Max-Parallel 1-membrane CS is universal
[6] in that it can simulate any 2-counter machine M . We show in this section
that the universality result of [6] can be obtained in terms of communication-free
VAS. Later we improve this result by showing that, in fact, the 1-membrane CS
need no more than k noncatalysts for some fixed k, independent of M .

Consider an n-dimensional communication-free VAS G = 〈x,W 〉 with its
set of addition vectors W partitioned into three disjoint sets W1, W2 and W3.
Under the 3-Max-Parallel mode, at each step G nondeterministically applies
a maximal set of at most 3 addition vectors simultaneously to yield the next
vector; however, from each set Wi, 1 ≤ i ≤ 3, at most one addition vector can
be chosen.

Acting as either acceptors or generators, the following result shows the equiv-
alence of 2-counter machines and communication-free VAS operating under the
3-Max-Parallel mode.
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Theorem 4. Let M be a 2-counter machine with two counters C1 and C2. There
exist an n-dimensional VAS G = 〈x, (W1,W2,W3)〉 under the 3-Max-Parallel
mode and a designated coordinate l such that M accepts on initial counter values
C1 = m and C2 = 0 iff

1. (generator:) m ∈ {v(l) | v ∈ Rh(G)};
2. (acceptor:) from start vector x with x(l) = m, Rh(G) �= ∅, i.e., G has a

halting computation.

Here n is bounded by a function of the number of states of M .

By assigning for each 1 ≤ i ≤ 3, a catalyst Ci for the set of addition vectors
Wi, defining a distinct noncatalyst symbol for each position in the addition
vector, and converting each vector in Wi to a rule of the form Cia → Civ, where
a is a noncatalyst and v is a (possibly null) string of noncatalysts, the following
result can easily be obtained from Theorem 4.

Corollary 3. Let M be a 2-counter machine with two counters. There exists a
1-membrane 3-Max-Parallel CS S with catalysts C1, C2, C3 and n noncatalysts
with a designated noncatalyst symbol al such that M accepts on initial counter
values m and 0, respectively, iff

1. (generator:) m ∈ {#al
(y) | y ∈ Rh(S)};

2. (acceptor) if S starts with initial configuration (al)my, for some y not con-
taining al, then Rh(S) �= ∅.

We note that in the corollary above, the CS operates in 3-Max-Parallel
mode. Now the catalyst C1 (resp. C2) is needed to make sure that at most one
addition vector in W1 (resp. W2) is simulated by the CS at each step. However,
catalyst C3 is not really needed in that we can convert each addition vector in
W3 to a rule of the form a → v, i.e., a noncooperative rule (without a catalyst).
Thus, the system can be constructed to have only two catalysts with catalytic
rules and noncooperative rules. This was also shown in [6]. However, the degree
of maximal parallelism in the system is no longer 3 (because now more than one
noncooperative rule may be applicable at each step). It can be shown that at any
point, no more than 3 noncooperative rules are applicable. This in turn implies
that the degree of maximal parallelism now becomes 5 (two catalysts plus 3
noncooperative rules). Note also that n, the dimension of the communication-
free VAS, which translates to the number of noncatalysts for the system, is also
a function of the number of states, hence is unbounded.

We can improve the above results. We need the following lemma.

Lemma 1. There exists a 2-counter machine U with counters C1 and C2 that is
universal in the following sense. When U is given a description of an arbitrary 2-
counter machine M as a positive integer in C2 and an input m in C1, U accepts
iff M with input m on its first counter and 0 on its other counter accepts.

Therefore, we have:
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Corollary 4. There exists a fixed positive integer n such that if L ⊆ N is any
recursively enumerable set of nonnegative integers, then:

1. L can be generated (accepted) by a 1-membrane 3-Max-Parallel CS with 3
catalysts and n noncatalysts.

2. L can be generated (accepted) by a 1-membrane 5-Max-Parallel P system
with 2 catalysts and n noncatalysts with catalytic and noncooperative rules.

2.5 9-Max-Parallel 1-Membrane CS with One Catalyst

We now look at a model of a 1-membrane CS with only one catalyst C with initial
configuration Ckx for some string x of noncatalysts (thus, there are k copies of
C). The rules allowed are of the form Ca → Cv or of the form Caa → Cv, i.e.,
C catalizes two copies of an object. Clearly the system operates in maximally
parallel mode, but uses no more than k rules in any step. We call this system
1GCS. This system is equivalent to a restricted form of cooperative P system
[13, 14]. A simple cooperative system (SCO) is a P system where the rules allowed
are of the form a → v or of the form aa → v. Moreover, there is some fixed integer
k such that the system operates in maximally parallel mode, but uses no more
than k rule instances in any step. We can show the following:

Theorem 5. 1GCS (hence, also SCO) operating under the 9-Max-Parallel
mode is universal.

3 Sequential 1-Membrane Communicating P Systems

Consider the model of a communicating P system (CPS) with only one mem-
brane, called the skin membrane [16]. The rules are of the form: (1) a → ax, (2)
ab → axby, (3) ab → axbyccome, where a, b, c are objects, x, y (which indicate the
directions of movements of a and b) can only be here (i.e., the object remains in
the membrane) or out (i.e., the object is expelled into the environment). The third
rule brings in an object c from the environment into the skin membrane. In the se-
quel, we omit the designation here, so that objects that remain in the membrane
will not have this subscript. There is a fixed finite set of rules in the membrane.
At the beginning, there is a fixed configuration of objects in the membrane.

Assume that the computation is sequential; i.e., at each step there is only
one application of a rule (to one instance). So, e.g., if nondeterministically a
rule like ab → ahereboutccome is chosen, then there must be at least one a and
one b in the membrane. After the step, a remains in the membrane, b is thrown
out of the membrane, and c comes into the membrane. There may be several
a’s and b’s, but only one application of the rule is applied. Thus, there is no
parallelism involved. The computation halts when there is no applicable rule.
We are interested in the multiplicities of the objects when the system halts.

One can show that a 1-membrane CPS can be simulated by a vector addition
system (VAS) (this is a special case of a theorem in the next section). However,
the converse is not true – it was shown in [3] that a sequential 1-membrane CPS
can only define a semilinear set.
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4 Sequential 1-Membrane Extended CPS (ECPS)

Recall that 1-membrane CPS’s operating sequentially define only semilinear sets.
In contrast, we shall see in the next section that sequential 2-membrane CPS’s
are equivalent to VASS.

There is an interesting generalization of a 1-membrane CPS, we call extended
CPS (or ECPS) – we add a fourth type of rule of the form: ab → axbyccomedcome.
That is, two symbols can be imported from the environment. We shall see below
that ECPS’s are equivalent to VASS’s.

Let G be an n-dimensional VASS. Clearly, by adding new states, we may
assume that all transitions in G have the form: pi → (pj ,+1h), pi → (pj ,−1h).
The above is a short-hand notation. The +1h is addition of 1 to the h-th coordi-
nate, and −1h is subtraction of 1 from the h-th coordinate. All other coordinates
are unchanged. Note at each step, the state uniquely determines whether it is a
‘+1 transition’ or a ‘-1 transition’.

For constructing the ECPS S equivalent to G, we associate symbol pi for every
state of the VASS, ah for every coordinate (i.e., position) h in the transition. We
also define a new special symbol c. So the ECPS has symbols p1, ...ps (s is the
number of states), a1, ..., an (n is dimension of the VASS), and c.

Then a transition of the form pi → (pj ,+1h) in G is simulated by the following
rule in S: pic → pi(out)cherepj(come)ah(come)

A transition of the form pi → (pj ,−1h) in G is simulated by the following
rule in S: piah → pi(out)ah(out)pj(come).

If the VASS G has starting point 〈p1, v〉, where v = (i1, ..., in) and p1 is the
start state, then ECPS S starts with the word p1a

i1
1 ...a

in
n c. Clearly, S simulates

G.
Conversely, suppose we are given an ECPS S over symbols a1, ..., an

with initial configuration w and rules R1, ..., Rk. The VASS G has states
R0, R1, R

′
1, ...Rk, R′k and starting point 〈R0, v0〉, where v0 is the n-dimensional

vector in Nn representing the multiplicities of the symbols in the initial config-
uration w. The transitions of G are defined as follows:

1. R0 → (Ri, zero) for every 1 ≤ i ≤ k is a transition, where zero represents
the zero vector.

2. If Ri is a rule of the form ah → ahx, then the following are transitions:
Ri → (R′i,−1h)
R′i → (Rj , dhx) for every 1 ≤ j ≤ k, where dhx = 0h if x = (out) and
dhx = +1h if x = (here).
(As before, −1h, 0h,+1h mean subtract 1, add 0, add 1 to h, respectively;
all other coordinates are unchanged.)

3. If Ri is a rule of the form ahar → ahxary, then the following are transitions:
Ri → (R′i,−1h,−1r)
R′i → (Rj , dhx, dry) for every 1 ≤ j ≤ k, where dhx and dry are as defined
above.
(Note that if h = r, then (R′i,−1h,−1r) means (R′i,−2h), i.e., subtract 2
from coordinate h.)
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4. If Ri is a rule of the form ahar → ahxaryas(come), then the following are
transitions:
Ri → (R′i,−1h,−1r)
R′i → (Rj , dhx, dry,+1s) for every 1 ≤ j ≤ k, where dhx and dry are as
defined above.

5. If Ri is a rule of the form ahar → ahxaryas(come)at(come), then the following
are transitions:
Ri → (R′i,−1h,−1r)
R′i → (Rj , dhx, dry,+1s,+1t) for every 1 ≤ j ≤ k, where dhx and dry are as
defined above.

It follows from the construction above that G simulates S. Thus, we have:

Theorem 6. Sequential 1-membrane ECPS and VASS are equivalent.

We can generalize rules of an ECPS further as follows:

1. ai1 ...aih
→ ai1x1 ...ai1xh

2. ai1 ...aih
→ ai1x1 ...ai1xh

cj1come
...cjlcome

where h, l ≥1, and xm ∈ {here, out} for 1 ≤ m ≤ h, and the a’s and c’s are
symbols. Call this system ECPS+. Generalizing the constructions in the proof
of Theorem 6, we can show ECPS+ is still equivalent to a VASS. Thus, we have:

Corollary 5. The following systems are equivalent: Sequential 1-membrane
ECPS, sequential 1-membrane ECPS+, and VASS.

Using rules of types of 1 and 2 above, we can define the three versions of
parallelism as in Section 2.3, and we can prove the following result. Note that
the first part was shown in [7].

Theorem 7. For n = 2, a 1-membrane CPS (and, hence, also 1-membrane
ECPS+) operating under the n-Max-Parallel mode can define a recursively
enumerable set. For any n, a 1-membrane ECPS+ operating under ≤ n-Parallel
mode or n-Parallel mode is equivalent to a VASS.

5 Multi-membrane CPS and ECPS

In this section, we look at CPS and ECPS with multiple membranes. Now the
subscripts x, y in the CPS rules a → ax, ab → axby, ab → axbyccome (and
ab → axbyccomedcome in ECPS) can be here, out, or inj . As before, here means
that the object remains in the membrane containing it, out means that the object
is transported to the membrane directly enclosing the membrane that contains
the object (or to the environment if the object is in the skin membrane), and
come can only occur within the outermost region (i.e., skin membrane). The
designation inj means that the object is moved into a membrane, labeled j,
that is directly enclosed by the membrane that contains the object.

In Section 3, we saw that a sequential 1-membrane CPS can only define
a semilinear set. We can show that if the system has two membranes, it can
simulate a vector addition system. Thus, we have:
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Theorem 8. A sequential 2-membrane CPS S can simulate a VASS G.

In Theorem 6, we saw that a sequential 1-membrane ECPS can be simulated
by a VASS. The construction can be extended to multi-membrane ECPS. Recall
that we now allow rules of the form: ab → axbyccomedcom.

Suppose that S has m membranes. Let {a1, ..., an} be the set of symbols
(objects) that can occur in the configurations of S. Then each reachable config-
uration of S is an mn-tuple (v1, ..., vm), where vq is an n-tuple representing the
multiplicities of the symbols a1, ..., an in membrane q. Then the set of all reach-
able configurations of S is a subset of Nmn. Let R1, ..., Rk be the rules in S. Note
that Ri not only gives the rule but also the membrane where it appears. The
construction of the VASS G simulating S is similar to the construction described
in the second part of the proof of Theorem 6. In fact the construction also works
for ECPS+. Since a sequential 2-membrane CPS can simulate a VASS, we have:

Theorem 9. The following are equivalent: VASS, sequential 2-membrane CPS,
sequential 1-membrane ECPS, sequential multi-membrane ECPS, and sequential
multi-membrane ECPS+.

Finally, we observe that Theorem 7 extends to multi-membrane CPS:

Theorem 10. For any n, a multi-membrane ECPS+ operating under ≤ n-
Parallel mode or n-Parallel mode is equivalent to a VASS.

6 Conclusion

We showed in this paper that P systems that compute in sequential or lim-
ited parallel mode are strictly weaker than systems that operate with maximal
parallelism for two classes of systems: multi-membrane catalytic systems and
multi-membrane communicating P systems. Our proof techniques can be used
to show that many of the P systems that have been studied in the literature
(including ones with membrane dissolving rules) operating under sequential or
limited parallelism with unprioritized rules can be simulated by vector addition
systems.
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Abstract. There is a close relationship between formal language theory
and data compression. Since 1990’s various types of grammar-based text
compression algorithms have been introduced. Given an input string,
a grammar-based text compression algorithm constructs a context-free
grammar that only generates the string. An interesting and challenging
problem is pattern matching on context-free grammars P of size m and
T of size n, which are the descriptions of pattern string P of length
M and text string T of length N , respectively. The goal is to solve the
problem in time proportional only to m and n, not to M nor N . Kieffer
et al. introduced a very practical grammar-based compression method
called multilevel pattern matching code (MPM code). In this paper, we
propose an efficient pattern matching algorithm which, given two MPM
grammars P and T , performs in O(mn2) time with O(mn) space. Our
algorithm outperforms the previous best one by Miyazaki et al. which
requires O(m2n2) time and O(mn) space.

1 Introduction

In 1990’s formal language theory found text data compression to be a very
promising application area; data compression is the discipline which aims to re-
duce space consumption of the data by removing its redundancy, and this is
achievable by constructing a context-free grammar G which only generates the
input text string w. Namely, the grammar G is such that its language L(G) is
{w}. Such a context-free grammar adroitly extracts, and succinctly represents,
repeated segments of the input string, and thus gives a superbly compact repre-
sentation of the string. According to this observation, many types of ingenious
grammar-based text compression algorithms have been introduced so far. Exam-
ples of grammar-based text compressions are Sequitur [15, 17], Re-Pair [12],
byte pair encoding (BPE) [5], grammar transform [9, 10], and straight-line pro-
grams (SLPs) [8].

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 225–236, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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As strings are the most basic type for data storage, pattern matching has
been an omnipresent problem in Computer Science [3]. Due to rapid spread and
increase of compressed data, we naturally face the pattern matching problem
with compressed strings. Namely, we are here required to do pattern matching
on two compressed strings (text and pattern) that are described in the form of
a context-free grammar. This problem is also called the fully compressed pattern
matching problem [18]. The problem is formalized as follows:

Input: context-free grammars P and T generating only pattern P and text T ,
respectively.

Output: all occurrences of P in T .

Let m and n be the sizes of the grammars P and T respectively, and M and N
be the lengths of the strings P and T , respectively. What should be emphasized
here is that the goal is to solve this problem in time proportional only to m
and n, not to M nor N . Although there exist a number of O(M + N)-time
algorithms that solve the pattern matching problem for uncompressed strings P
and T [6, 4], none of them supplies us with a polynomial time solution to the
compressed version of the problem since M (resp. N) can be exponentially large
with respect to m (resp. n). Therefore, in order for us to develop a polynomial
time solution, quite a limited amount of computational space is avaliable, and
this makes the problem by far harder to solve.

The first polynomial-time solution to the problem was given by Karpinski et
al. for straight-line programs (SLPs) [8]. SLPs are a grammar-based compression
method which constructs a context-free grammar in the Chomsky normal form.
They proposed an algorithm which runs in O((m + n)4 log(m + n)) time using
O((m + n)3) space. Later on, Miyazaki et al. [13] gave an improved algorithm
running in O(m2n2) time using O(mn) space.

Since computing a minimal SLP that generates a given string is known to
be NP-complete, it is of great significance to develop approximative algorithms
for generating small grammars [19, 2]. One of those algorithms is the multilevel
pattern matching code (MPM code) introduced by Kieffer et al. [11]. MPM code
is attractive in that it performs in linear time with respect to the input string
size, and is capable of exponential compression - the generated grammar size can
be exponentially small with respect to the input string size. It is also noteworthy
that MPM grammars have a hierarchical structure, which suggests that MPM
code has a potential for recognizing lexical and grammatical structures in strings
similarly to Sequitur [14, 16].

In this paper, we consider the pattern matching problem on MPM gram-
mars. Although the algorithm by Miyazaki et al. [13] for general SLPs requires
O(m2n2) time and O(mn) space, our algorithm specialized for MPM grammars
performs in O(mn2) time within O(mn) space.

2 Preliminaries

Let N be the set of natural numbers, and N+ be positive integers. Let Σ be a
finite alphabet. An element of Σ∗ is called a string. The length of a string T is
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Fig. 1. Derivation tree of the MPM for string abacabbcabacc

denoted by |T |. The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |,
and the substring of a string T that begins at position i and ends at position j
is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |.

A period of a string T is an integer p (1 ≤ p ≤ |T |) such that T [i] = T [i+ p]
for any i = 1, 2, . . . , |T | − p.

Let X be any variable of a context-free grammar. We define the length of X
to be the length of the string X produces, and denote it by |X|.

A multilevel pattern matching grammar (MPM grammar) T is a sequence of
assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where Xi are variables and expri are expressions of the form either:

– expri = a (a ∈ Σ), or
– expri = X�Xr (�, r < i) where |X�| ≥ |Xr| and |X�| is a power of 2,

and T = Xn. MPM grammar T is a context-free grammar in the Chomsky
normal form such that its language L(T ) is {T}. The size of T is n and is
denoted by ‖T ‖. For example, MPM grammar T for T = abacabbcabacc is:

X1 = a, X2 = b, X3 = c, X4 = X1X2, X5 = X1X3, X6 = X2X3, X7 = X4X5,
X8 = X4X6, X9 = X7X8, X10 = X7X3, X11 = X9X10,

and T = X11. Note ‖T ‖ = 11. Fig. 1 illustrates the derivation tree of T .
The height of variable X, denoted by height(X), is defined as follows:

height(X) =
{

1 if X = a (a ∈ Σ),
max(height(X�), height(Xr)) + 1 if X = X�Xr.

That is, height(X) is the length of the longest path from X to a leaf. In the
running example, height(X10) = 4, height(X11) = height(T ) = 5, and so on
(see Fig. 1). It is easy to see height(T ) ≤ n.
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The pattern matching problem for strings in terms of MPM grammars is,
given two MPM grammars T and P that are the descriptions of text T and
pattern P , to find all occurrences of P in T . Namely, we compute the following
set:

Occ(T, P ) = {i | T [i : i+ |P | − 1] = P}.

In the sequel, we use X and Xi for variables of T , and Y and Yj for variables
of P. Let ‖T ‖ = n and ‖P‖ = m.

3 Overview of Algorithm

In this section, we show an overview of our algorithm that outputs a compact
representation of Occ(T, P ) for given MPM grammars T and P.

For strings X,Y ∈ Σ∗ and integer k ∈ N , we define the set of all occurrences
of Y that cover or touch the position k in X by

Occ↑(X,Y, k) = {i ∈ Occ(X,Y ) | k − |Y | ≤ i ≤ k}.

In the following, [i, j] denotes the set {i, i+ 1, . . . , j} of consecutive integers.

Observation 1 ([7]). For any strings X,Y ∈ Σ∗ and integer k ∈ N ,

Occ↑(X,Y, k) = Occ(X,Y ) ∩ [k − |Y |, k].

Lemma 1 ([7]). For any strings X,Y ∈ Σ∗ and integer k ∈ N , Occ↑(X,Y, k)
forms a single arithmetic progression.

For positive integers a, d, t ∈ N+, we define 〈a, d, t〉 = {a+(i−1)d | i ∈ [1, t]}.
Assume that for t = 0, 〈a, d, t〉 = ∅. Note that t denotes the cardinality of the
set 〈a, d, t〉. By Lemma 1, Occ↑(X,Y, k) can be represented as the triple 〈a, d, t〉
with the minimum element a, the common difference d, and the length t of
the progression. By ‘computing Occ↑(X,Y, k)’, we mean to calculate the triple
〈a, d, t〉 such that 〈a, d, t〉 = Occ↑(X,Y, k).

For a set U of integers and an integer k, we denote U ⊕ k = {i+ k | i ∈ U}
and U $ k = {i− k | i ∈ U}. For MPM variables X = X�Xr and Y , we denote
Occ�(X,Y ) = Occ↑(X,Y, |X�| + 1).

Lemma 2 ([13]). For any MPM variables X = X�Xr and Y ,

Occ(X,Y ) = Occ(X�, Y ) ∪ Occ�(X,Y ) ∪ (Occ(Xr, Y ) ⊕ |X�|).

(See Fig. 2.)

Lemma 2 implies that Occ(Xn, Y ) can be represented by a combination of

{Occ�(Xi, Y )}n
i=1 = Occ�(X1, Y ),Occ�(X2, Y ), . . . ,Occ�(Xn, Y ).
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Fig. 2. s1, s2, s3 ∈ Occ(X, Y ), where s1 ∈ Occ(X�, Y ), s2 ∈ Occ�(X, Y ) and s3 ∈
Occ(Xr, Y )

Thus, the desired output Occ(T, P ) = Occ(Xn, Ym) can be expressed as a
combination of {Occ�(Xi, Ym)}n

i=1 that requires O(n) space. Hereby, computing
Occ(T, P ) is reduced to computing Occ�(Xi, Ym) for every i = 1, 2, . . . , n. In
computing each Occ�(Xi, Yj) recursively, the same set Occ�(Xi′ , Yj′) might
repeatedly be referred to, for i′ < i and j′ < j. Therefore we take the dynamic
programming strategy. We use an m×n table App where each entry App[i, j] at
row i and column j stores the triple for Occ�(Xi, Yi). We compute each App[i, j]
in a bottom-up manner, for i = 1, . . . , n and j = 1, . . . ,m. In Section 4, we will
show each App[i, j] is computable in O(height(Xi)) time. Since height(Xi) ≤ n,
we can construct the whole table App in O(mn2) time. The size of the whole
table is O(mn), since each triple occupies O(1) space. We therefore have the
main result of the paper, as follows:

Theorem 1. Given two MPM grammars T and P, Occ(T, P ) can be computed
in O(mn2) time with O(mn) space.

4 Details of Algorithm

In this section, we show that Occ�(Xi, Yj) is computable in O(height(Xi)) time
for each variable Xi in T and Yj in P.

The following two lemmas and one observation are necessary to prove Lemma 5
which is one of the key lemmas for our algorithm.

Lemma 3 ([7]). For strings X,Y ∈ Σ∗ and integer k ∈ N , let 〈a, d, t〉 =
Occ↑(X,Y, k). If t ≥ 1, then d is the shortest period of X[s : b+ |Y | − 1] for any
s ∈ 〈a, d, t− 1〉 and b = a+ (t− 1)d.

Proof. First we see that d is a period of X[a : b + |Y | − 1] as follows. Since
〈a, d, t〉 = Occ↑(X,Y, k), we know
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Fig. 3. s ∈ Occ�(X, Y ) if and only if either s ∈ Occ�(X, Y�) and s+ |Y�| ∈ Occ(X, Yr)
(left case), or s ∈ Occ(X, Y�) and s + |Y�| ∈ Occ�(X, Yr) (right case)

Y = X[a : a+ |Y | − 1],
Y = X[a+ d : a+ d+ |Y | − 1],

...
Y = X[b : b+ |Y | − 1].

By these equations, we have

X[i] = X[i+ d] for all i ∈ [a, b+ |Y | − 1 − d],

which shows that d is a period of X[s : b+ |Y | − 1] for any s ∈ 〈a, d, t− 1〉.
We now suppose that X[s : b + |Y | − 1] has a smaller period d′ < d for

the contrary. That is, X[i] = X[i + d′] for all i ∈ [s, b + |Y | − 1 − d′]. Then
we have Y [i] = X[s + i − 1] = X[s + d′ + i − 1] for all i ∈ [1, |Y |]. Since
b− s ≥ b− (a+(t− 2) ·d) = b− (b−d) = d > d′, we have s+d′ ∈ Occ↑(X,Y, k).
However, this contradicts with 〈a, d, t〉 = Occ↑(X,Y, k), since s + d′ �∈ 〈a, d, t〉.
Thus d is the shortest period of X[s : b+ |Y | − 1] for any s ∈ 〈a, d, t− 1〉. ��

Observation 2 ([13]). For any MPM variables X, Y = Y�Yr, and integer
k ∈ N ,

Occ�(X,Y ) =
(
Occ�(X,Y�) ∩ (Occ(X,Yr) $ |Y�|)

)
∪
(
Occ(X,Y�) ∩ (Occ�(X,Yr) $ |Y�|)

)
.

(See Fig. 3.)

Lemma 4 ([7]). For any strings X,Y1, Y2 ∈ Σ∗ and integers k1, k2 ∈ N ,
Occ↑(X,Y1, k1) ∩ (Occ↑(X,Y2, k2) $ |Y1|) can be computed in O(1) time, pro-
vided that Occ↑(X,Y1, k1) and Occ↑(X,Y2, k2) are already computed.
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For strings X,Y ∈ Σ∗ we consider the two following queries:

Single-Match Query: Given integer s ∈ N , return if s ∈ Occ(X,Y ) or not.
Covering-Match Query: Given integer k ∈ N , return triple 〈a, d, t〉 which

represents Occ↑(X,Y, k).

Lemma 5. For any MPM variables X and Y = Y�Yr and integer k ∈ N ,
computing Occ�(X,Y ) is reducible in constant time to the following queries:

(1) covering-match query Occ↑(X,Y�, |X�| + 1) = Occ�(X,Y�),
(2) covering-match query Occ↑(X,Yr, |X�| + 1) = Occ�(X,Yr),
(3) at most two covering-match queries Occ↑(X,Y ′, k1) and Occ↑(X,Y ′, k2) for

some integers k1, k2, where Y ′ is either Y� or Yr, and
(4) at most two single-match queries s1, s2 ∈ Occ(X,Y ′) for some integers s1, s2,

where Y ′ is either Y� or Yr.

Proof. We perform two covering-match queries Occ�(X,Y�) and Occ�(X,Yr),
and let 〈a1, d1, t1〉 and 〈a2, d2, t2〉 be answers of them, respectively. Depending
on the cardinalities of triples, we have the four following cases:

(a) when t1 ≤ 1 and t2 ≤ 1.
At most two single-match queries are necessary for the following reasons. If
t1 = 0, we know Occ�(X,Y�) = ∅. If t1 = 1, we perform a single-match
query a1 + |Y�| ∈ Occ(X,Yr), and we have

Occ�(X,Y�) ∩ (Occ(X,Yr) $ |Y�|) = {a1} ∩ (Occ(X,Yr) $ |Y�|)

=

{
{a1} if a1 + |Y�| ∈ Occ(X,Yr),
∅ otherwise.

Similarly, if t2 = 0 we know Occ�(X,Yr) = ∅. If t2 = 1, we have

Occ(X,Y�) ∩ (Occ�(X,Yr) $ |Y�|) = Occ(X,Y�) ∩ ({a2} $ |Y�|)

=

{
{a2−|Y�|} if a2−|Y�| ∈Occ(X,Y�),
∅ otherwise.

By Observation 2, Occ�(X,Y ) is a union of these two sets. Trivially, the
union operation can be done in constant time since each of these two sets is
either singleton or empty.

(b) when t1 ≥ 2 and t2 ≤ 1.
First we compute A = Occ�(X,Y�) ∩ (Occ(X,Yr) $ |Y�|) = 〈a1, d1, t1〉 ∩
(Occ(X,Yr) $ |Y�|), by using one covering-match query and at most one
single-match query. Let b1 = a1 + (t1 − 1)d1. We consider two sub-cases
depending on the length of Yr with respect to b1 − a1 = (t1 − 1)d1 ≥ d1, as
follows.
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Fig. 4. Long case (left) and short case (right)

– the case |Yr| ≥ b1 − a1 (see the left of Fig. 4). By this assumption, we
have b1 − |Yr| ≤ a1, which implies [a1, b1] ⊆ [b1 − |Yr|, b1]. Thus

A = 〈a1, d1, t1〉 ∩ (Occ(X,Yr) $ |Y�|)
= (〈a1, d1, t1〉 ∩ [a1, b1]) ∩ (Occ(X,Yr) $ |Y�|)
= (〈a1, d1, t1〉 ∩ [b1 − |Yr|, b1]) ∩ (Occ(X,Yr) $ |Y�|)
= 〈a1, d1, t1〉 ∩ ([b1 − |Yr|, b1] ∩ (Occ(X,Yr) $ |Y�|))
= 〈a1, d1, t1〉 ∩ (([b1 − |Yr| + |Y�|, b1 + |Y�|] ∩ Occ(X,Yr)) $ |Y�|)
= 〈a1, d1, t1〉 ∩ (Occ↑(X,Yr, b1 + |Y�|) $ |Y�|),

where the last equality is due to Observation 1. Here, we perform covering-
match query Occ↑(X,Yr, b1 + |Y�|). According to Lemma 4, 〈a1, d1, t1〉∩
(Occ↑(X,Yr, b1 + |Y�|) $ |Y�|) can be computed in constant time.

– the case |Yr| < b1−a1 (see the right of Fig. 4). The basic idea is the same
as in the previous case, but covering-match query Occ↑(X,Yr, b1 + |Y�|)
is not enough, since |Yr| is ‘too short’. However, additional single-match
query a1 + |Y�| ∈ Occ(X,Yr) fills up the gap, as follows.

A = 〈a1, d1, t1〉 ∩ (Occ(X,Yr) $ |Y�|)
= (〈a1, d1, t1〉 ∩ [a1, b1]) ∩ (Occ(X,Yr) $ |Y�|)
= (〈a1, d1, t1〉 ∩ ([a1, b1−|Yr|−1]∪[b1−|Yr|, b1])) ∩ (Occ(X,Yr)$|Y�|)
= 〈a1, d1, t1〉 ∩ (S ∪ Occ↑(X,Yr, b1 + |Y�|)) $ |Y�|),

where S = [a1 + |Y�|, b1 + |Y�| − |Yr| − 1] ∩ Occ(X,Yr).

By Lemma 3, d1 is the shortest period of X[a1 : b1 + |Y | − 1]. Therefore,
we have X[a1 + |Y�| : b1 + |Y�| − 1] = ut1 where u is the suffix of Y� of
length d1. Thus, if a1 + |Y�| ∈ Occ(X,Yr), S = 〈a1 + |Y�|, d1, t

′〉, where t′

is the maximum integer satisfying a1+ |Y�|+(t′−1)d1 ≤ b1+ |Y�|−|Yr|−
1. Since Occ↑(X,Yr, b1 + |Y�|) forms a single arithmetic progression by
Lemma 1, the union operation can be done in constant time. Otherwise
(if a1 + |Y�| �∈ Occ(X,Yr)), we have S = ∅ for the same reason, and thus
the union operation can be done in constant time.

We now consider set B = Occ(X,Y�) ∩ (Occ�(X,Yr) $ |Y�|). Since t2 ≤ 1,
Occ�(X,Yr) is either singleton or empty. If it is empty, B = ∅. If it is
singleton {a2}, we just perform single-match query a2 − |Y�| ∈ Occ(X,Y�).
If the answer is ‘yes’, then B = {a2 − |Y�|}, and otherwise B = ∅.
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The union operation for Occ�(X,Y ) = A∪B can be done in constant time
since B is at most singleton.
In total, a covering-match query and at most two single-match queries are
enough to compute Occ�(X,Y ) in this case.

(c) when t1 ≤ 1 and t2 ≥ 2.
Symmetric to Case (b).

(d) when t1 ≥ 2 and t2 ≥ 2.
We can compute A = Occ�(X,Y�) ∩ (Occ(X,Yr) $ |Y�|) in the same way
as Case (b), since the proof for Case (b) does not depend on the cardinality
of Occ(X,Yr). Also, computing B = Occ(X,Y�) ∩ (Occ�(X,Yr) $ |Y�|) is
symmetric to computing A. Recall that each of A and B is an intersection of
two sets both form a single arithmetic progression. This implies that A and
B also form a single arithmetic progression (it can be proven in a similar
manner to Lemma 4). Hence the union operation for Occ�(X,Y ) = A ∪ B
can be done in constant time. Thus, two covering-match queries and at most
two single-match queries are enough in this case.

��

The time complexity of a single-match query is the following:

Lemma 6 ([13]). For any MPM variables X,Y and integer s ∈ N , single-
match query s ∈ Occ(X,Y ) can be done in O(height(X)) time.

Now the only remaining thing is how to efficiently perform covering-match
query Occ↑(X,Y, k). We will show it in Lemma 7.

For any MPM variable X = X�Xr, we recursively define the leftmost descen-
dant lmd(X,h) and the rightmost descendant rmd(X,h) of X with respect to
height h (≤ height(X)), as follows:

lmd(X,h) =
{

lmd(X�, h) if height(X) > h,
X if height(X) = h,

rmd(X,h) =
{

rmd(Xr, h) if height(X) > h,
X if height(X) = h.

In the example of Fig. 1, lmd(X10, 3) = X7, rmd(X9, 2) = X6, rmd(X7, 1) =
X3, and so on. For variable Xi (1 ≤ i ≤ n) and height h (< height(Y )), we
precompute two tables storing lmd(Xi, h) and rmd(Xi, h) respectively. By using
these tables, we can refer to any lmd(Xi, h) and rmd(Xi, h) in constant time.
These tables can be constructed in O(mn) time in a bottom-up manner.

Lemma 7. For any MPM variables X,Y and integer k ∈ N , covering-match
query Occ↑(X,Y, k) is reducible in O(height(X)) time to at most three covering-
match queries Occ�(L, Y ), Occ�(C, Y ), and Occ�(R, Y ) where L,C,R are a
descendant of X or X itself.

Proof. Let X = X�Xr and Y = Y�Yr. If k = |X�| + 1, then only one covering-
match query Occ�(X,Y ) is enough. Now we assume k �= |X�| + 1.
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Fig. 5. Given integer k, the left (right, resp.) illustrates how to find L (R, resp.)

Let i = max(k−|Y |, 1) and j = min(k+|Y |−1, |X|). We consider the possibly
shortest descendant L of X which covers the range [i, k]. (see the left of Fig. 5.)
Let iL, jL be the integers such that X[iL : jL] = L. Let l = iL+|L�|. Similarly, we
consider the possibly shortest descendant R of X which covers the range [k, j].
(see the right of Fig. 5.) Let iR, jR be the integers such that X[iR : jR] = R. Let
r = iR + |R�|.

Assume l = r, that is, L = R. In this case only one covering-match query
Occ�(L, Y ) is enough, since k = l = iL + |L�| and thus

Occ↑(X,Y, k) = Occ↑(L, Y, |L�| + 1) ⊕ (iL − 1)
= Occ�(L, Y ) ⊕ (iL − 1).

In case l < r, we have the following sub-cases.

(1) when L is a descendant of R.
Depending on the shapes of R = R�Rr and Y = Y�Yr, we have the four
following sub-cases:
(a) when |R�| = |Rr| and |Y�| = |Yr|. In this case, L = rmd(R�, height(Y )+

1). Then,

Occ↑(X,Y, k) = ((Occ�(L, Y ) ∩ [k−|Y |−iL+1 : k−iL+1]) ⊕ (iL−1))
∪ ((Occ�(R, Y )∩[k−|Y |−iR+1:k−iR+1])⊕(iR−1)).

Since Occ�(L, Y ) and Occ�(R, Y ) form a single arithmetic progression
by Lemma 1, the intersection and union operations take O(1) time.

(b) when |R�| > |Rr| and |Y�| = |Yr|. Since |R�| and |Y | are a power of 2,
we have L = rmd(R�, height(Y ) + 1). Thus we have the same equation
as in Case (1)-(a).

(c) when |R�| = |Rr| and |Y�| > |Yr|. We have the two following sub-cases:
(i) when r−k+ |Y | ≤ 2×|Y�|. In this case, L = rmd(R�, height(Y�)+1).

Thus we have the same equation as in Case (1)-(a).
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(ii) when r−k+ |Y | > 2×|Y�|. In this case, L = rmd(R�, height(Y�)+2).
Let C = Lr. Then,

Occ↑(X,Y, k)
= ((Occ�(L, Y ) ∩ [k − |Y | − iL + 1 : k − iL + 1]) ⊕ (iL − 1))

∪ ((Occ�(C, Y ) ∩ [k − |Y | − p+ 1 : k − p+ 1]) ⊕ (p− 1))
∪ ((Occ�(R, Y ) ∩ [k − |Y | − iR + 1 : k − iR + 1]) ⊕ (iR − 1)),

where p = iL + |L�|. By Lemma 1, the intersection and union oper-
ations can be done in O(1) time.

(d) when |R�| > |Rr| and |Y�| > |Yr|. Since |R�| is a power of 2, we can use
the same equations as in Case (1)-(c).

(2) when L is an ancestor of R.
Depending on the shapes of L = L�Lr and Y = Y�Yr, we have the four
following sub-cases:
(a) when |L�| = |Lr| and |Y�| = |Yr|. This is symmetric to Case (1)-(a).
(b) when |L�| > |Lr| and |Y�| = |Yr|. Let Lr = L�(r)Lr(r). Since |L�(r)| is a

power of 2, we can use the same strategy as in Case (2)-(a).
(c) when |L�| = |Lr| and |Y�| > |Yr|. This is a symmetric to Case (1)-(c).
(d) when |L�| > |Xr| and |Y�| > |Yr|. Let Lr = L�(r)Lr(r). Since |L�(r)| is a

power of 2, we can use the same strategy as in Case (2)-(c).

Since each of R,L is a descendant of X or X itself, we can find them in
O(height(X)) time by a top-down traversal on X. Moreover, C can be found in
constant time from L or R.

��
By Lemmas 5, 6 and 7, we conclude that each entry App[i, j] representing

Occ�(Xi, Yj) can be computed in O(height(Xi)) time. Since height(Xi) ≤ n,
given two MPM grammars T and P, we can compute Occ(T, P ) in O(mn2)
time.

5 Conclusions and Further Discussions

This paper considered the pattern matching problem on a subclass of context-
free grammars called multilevel pattern matching grammars (MPM grammars).
MPM code was developed by Kieffer et al. [11] for efficient grammar-based text
compression. Since MPM grammar sizes can be exponentially small with respect
to the original string sizes, it is a rather hard task to solve the pattern match-
ing problem in time proportional only to the grammar sizes. In this paper, we
developed an efficient pattern matching algorithm which, given two MPM gram-
mars P and T , runs in O(mn2) time with O(mn) space, where m = ‖P‖ and
n = ‖T ‖. Our algorithm outperforms the previous best algorithm of [13] running
in O(m2n2) time using O(mn) space. An interesting open problem is whether
an O(mn)-time solution is achievable or not.
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As a final remark we mention that MPM grammars can be seen as text
compression by ordered binary decision diagrams (OBDDs) [1]. OBDDs were
originally developed to represent a Boolean function as a directed acyclic graph.
OBDDs are also used for symbolic or implicit graph algorithms [20]. MPM code
turns out to reveal yet another application of OBDDs to text compression.

References

1. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys, 24:293–318, 1992.

2. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sa-
hai, and A. Shelat. Approximating the smallest grammar: Kolmogorov complexity
in natural models. In Proc. STOC’02, pages 792–801, 2002.

3. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

4. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
5. P. Gage. A new algorithm for data compression. The C Users Journal, 12(2), 1994.
6. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York, 1997.
7. S. Inenaga, A. Shinohara, and M. Takeda. A fully compressed pattern match-

ing algorithm for simple collage systems. In Proc. PSC’04, pages 98–113. Czech
Technical University, 2004.

8. M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nordic J. Comput., 4(2):172–186, 1997.

9. J. Kieffer and E. Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.

10. J. Kieffer and E. Yang. Grammar-based codes for universal lossless data compres-
sion. Communications in Information and Systems, 2(2):29–52, 2002.

11. J. Kieffer, E. Yang, G. Nelson, and P. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Transactions on Information Theory,
46(4):1227–1245, 2000.

12. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC’99,
pages 296–305. IEEE Computer Society, 1999.

13. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algo-
rithm for strings in terms of straight line programs. Journal of Discrete Algorithms,
1(1):187–204, 2000.

14. C. Nevill-Manning and I. Witten. Compression and explanation using hierarchical
grammars. Computer Journal, 40(2/3):103–116, 1997.

15. C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artificial Intelligence Research, 7:67–82, 1997.

16. C. Nevill-Manning and I. Witten. Inferring lexical and grammatical structure from
sequences. In Proc. DCC’97, pages 265–274. IEEE Computer Society, 1997.

17. C. Nevill-Manning and I. Witten. Phrase hierarchy inference and compression in
bounded space. In Proc. DCC’98, pages 179–188. IEEE Computer Society, 1998.

18. W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM’99,
volume 1725 of LNCS, pages 48–65. Springer-Verlag, 1999.

19. W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Comput. Sci., 302(1–3):211–222, 2003.

20. P. Woelfel. Symbolic topological sorting with OBDDs. In Proc. MFCS’03, volume
2747 of LNCS, pages 671–680. Springer-Verlag, 2003.



On the Complexity of 2-Monotone Restarting
Automata�
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Abstract. The R-automaton is the weakest form of the restarting
automaton. It is shown that the class of languages accepted by these
automata is incomparable under set inclusion to the class of growing
context-sensitive languages. In fact, this already holds for the class of
languages that are accepted by 2-monotone R-automata. Further it is
shown that already this class contains NP-complete languages. Thus, al-
ready the 2-monotone R-automaton has a surprisingly large expressive
power.

1 Introduction

The restarting automaton was introduced by Jancar et. al. as a formal tool
to model the analysis by reduction, which is a technique used in linguistics to
analyse sentences of natural languages [4]. This analysis by reduction consists of
a stepwise simplification of a given sentence so that the (in-) correctness of the
sentence is not affected.

A restarting automaton, RRWW-automaton for short, is a device M that
consists of a finite state control, a tape containing a word delimited by sentinels,
and a read/write window of a fixed size. This window moves from left to right
along the tape until the control decides (nondeterministically) that the content
of the window should be rewritten by some shorter string. After a rewrite, M
can continue to move its window to the right until it either halts and accepts,
or halts and rejects, or restarts, that is, it moves its window to the leftmost
position, re-enters the initial state, and continues with the computation. Thus,
each computation of M can be described through a sequence of cycles.

In addition to the general model outlined above, also various restricted ver-
sions of the restarting automaton have been considered. First of all there is the

� The first two authors were partially supported by a grant from the Deutsche
Forschungsgemeinschaft. The third and the fourth authors were supported by
the Grant Agency of the Czech Republic, Grant No. 201/02/1456, and Grant
No. 201/04/2102.

�� On leave from the Institute of Computer Science, University of Wroc�law, Poland.

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 237–248, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



238 T. Jurdziński et al.

RWW-automaton, which is required to make a restart immediately after each
rewrite operation. Thus, in each cycle of a computation an RWW-automaton
only sees the part of the tape between the left sentinel and the position where
the rewrite operation is performed. Then there is the RRW-automaton, which
only uses the letters of the input alphabet in its rewrite operations. A further re-
striction leads to the RR-automaton, where each rewrite operation simply deletes
some letters from the content of the read/write window. Obviously the restric-
tion on the restart operation and the restrictions on the rewrite operation can
be combined leading to the RW-automaton and the R-automaton.

In addition, a monotonicity property was introduced for the various types of
restarting automata which is based on the idea that from one cycle to the next
in a computation, the actual place where a rewrite operation is performed must
not increase its distance from the right end of the tape. The monotone restarting
automata essentially model bottom-up one-pass parsers. The monotone RWW-
and RRWW-automaton characterize the class CFL of context-free languages, and
the monotone and deterministic versions of all the above mentioned types of
restarting automata characterize the class DCFL of deterministic context-free
languages [5]. On the other hand it is immediate from the definition that the
class L(RRWW) of languages that are accepted by RRWW-automata is contained
in the class CSL of context-sensitive languages, and that it is contained in the
complexity class NP.

The monotone grammars generate the context-sensitive languages, and the
strictly monotone grammars generate the growing context-sensitive languages
(GCSL). In [2] the class GCSL is characterized by a nondeterministic machine
model, the shrinking two-pushdown automaton, sTPDA for short. The class GCSL
strictly contains the context-free languages, but the membership problem for
each growing context-sensitive language can still be solved in polynomial time [3].
Therefore GCSL can be seen as an interesting generalization of the context-free
languages.

In [10] it is shown that the deterministic variant of the sTPDA character-
izes the class CRL of Church Rosser languages [9], which also coincides with the
family of languages that are accepted by the deterministic RWW- and RRWW-
automata [11, 12]. On the other hand, the class GCSL is properly included in
the class L(RWW) of languages that are accepted by the (nondeterministic)
RWW-automata. In fact GCSL coincides with the class of languages that are ac-
cepted by the so-called weakly monotone (nondeterministic) RWW- and RRWW-
automata [6].

The context-free languages do not have sufficient expressive power to capture
all issues of the analysis by reduction of natural languages. Thus, neither do the
monotone restarting automata. On the other hand, the general RRWW- and
RWW-automata even accept NP-complete languages [6, 12], which means that
they cannot be implemented efficiently.

Therefore, in [14, 15] the notion of j-monotonicity (j ≥ 1) was introduced as
a generalization of the notion of monotonicity. It models the generalization from
bottom-up one-pass parsers to bottom-up multi-pass parsers, and it allows to
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measure the level of non-monotonicity of a language. Further, this new notion
seems to be much better suited to the task of modelling the analysis by reduction.
A restarting automaton is called j-monotone for an integer j ≥ 1 if, for each of
its computations, the corresponding sequence of cycles can be partitioned into
at most j subsequences that are each monotone. It is shown in [15] that the
expressive power of the j-monotone RRW-automaton increases with the value of
the parameter j.

Naturally this raises the question of the computational power of the various
types of j-monotone restarting automata and their relationships to other lan-
guage classes. From a practical point of view one would like to obtain a device
with an expressive power that is as large as possible, but which can still be
implemented efficiently, that is, at least in polynomial time.

Here we study the computational power of the j-monotone restarting auto-
mata and their relationship to the growing context-sensitive languages. We will
proceed as follows. After giving the necessary definitions in Section 2, we present
a general reduction from RWW-automata first to RW- and then to R-automata
in Section 3. Using these reductions as a tool we can translate many results con-
cerning the language class L(RWW) to the class L(R). In this way we will see
that already R-automata accept some NP-complete languages. Further, we will
show that the class L(2-mon-R) of languages that are accepted by 2-monotone
R-automata is incomparable under set inclusion to the language class GCSL (Sec-
tion 4), thus improving on the previously known result that L(R) and CFL are
incomparable.

Finally, we will present a generic construction that shows that already 2-
monotone RWW-automata accept NP-complete languages (Section 5). By the
reductions above this will then imply that already the 2-monotone R-automata
accept some NP-complete languages. In the concluding section we will shortly
discuss the consequences of this (unexpected) result.

Because of the page limit we cannot possibly present the constructions and
proofs in detail. The interested reader can find them in the corresponding tech-
nical report [7].

2 Definitions

For any class A of automata, L(A) will denote the class of languages that can
be accepted by the automata from A, and for a particular automaton M , L(M)
denotes the language that is accepted by M . Further, we will sometimes use
regular expressions instead of the corresponding regular languages. Finally, ε
denotes the empty word, and N+ denotes the set of all positive integers.

A restarting automaton, RRWW-automaton for short, is a nondeterministic
one-tape machine M with a finite-state control Q and a read/write window of
a fixed size k ≥ 1. The work space is limited by the left sentinel c| and the
right sentinel $, which cannot be removed from the tape. In addition to the
input alphabet Σ, the tape alphabet Γ of M may contain a finite number of
auxiliary symbols. The behaviour of M is described by a transition relation δ
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that associates to a pair (q, u) consisting of a state q and a possible content u
of the read/write window a finite set of possible transition steps. There are four
types of transition steps (see, e.g., [5] or [13] for details):

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A rewrite step causes M to replace the content u of the read/write window by
a shorter string v, and to change the state. Further, the read/write window
is placed immediately to the right of the string v.

3. A restart step causes M to move its read/write window to the left end of
the tape, so that the first symbol it sees is the left sentinel c| , and to re-enter
the initial state q0.

4. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation.

A configuration of M is a string αqβ where q ∈ Q, and either α = ε and β ∈
{c| } ·Γ ∗ · {$} or α ∈ {c| } ·Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the current state,
αβ is the current content of the tape, and it is understood that the head scans
the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of
the form q0c|w$, where w ∈ Γ ∗; if w ∈ Σ∗, then q0c|w$ is an initial configuration.
Thus, initial configurations are special restarting configurations.

We observe that any computation of a restarting automaton M consists of cer-
tain phases. A phase, called a cycle, starts in a restarting configuration, the head
moves along the tape performing MVR and Rewrite operations until a Restart op-
eration is performed and thus a new restarting configuration is reached. If no
further Restart operation is performed, then the computation necessarily halts
after finitely many steps – such a phase is called a tail. We require that M
performs exactly one Rewrite operation during each cycle – thus each new phase
starts on a shorter word than the previous one. During a tail at most one Rewrite
operation may be executed.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0c|w$, finishes by executing an Accept
instruction. Then L(M) is the language consisting of all words accepted by M .

An RWW-automaton is an RRWW-automaton which restarts immediately
after rewriting. An R(R)W-automaton is an R(R)WW-automaton whose working
alphabet coincides with its input alphabet. Note that each restarting configura-
tion is initial in this case. Finally, an R(R)-automaton is an R(R)W-automaton
whose rewriting instructions can be viewed as deletions, that is, if (q′, v) ∈
δ(q, u), then v is obtained by deleting some symbols from u.

Each cycle of a computation of an RWW-automaton consists of two phases.
In the first phase the automaton scans the tape from left to right, behaving like a
finite-state acceptor. In the second phase it performs a Rewrite transition followed
by a Restart step. Accordingly the transition relation of an RWW-automaton M
can be described through a finite sequence of so-called meta-instructions of the
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form (R, u → v), where R is a regular expression, called the regular constraint
of this instruction, and u and v are strings such that u → v stands for a Rewrite
step [13]. On trying to execute this meta-instruction M will get stuck (and so
reject) starting from the restarting configuration q0c|w$, if w does not admit a
factorization of the form w = w1uw2 such that c|w1 ∈ R. On the other hand, if
w does admit a factorization of this form, then one such factorization is chosen
nondeterministically, and q0c|w$ is transformed into the restarting configuration
q0c|w1vw2$. In order to be able to also describe the tails of accepting configu-
rations we use meta-instructions of the form (R, Accept), accepting the strings
from the regular language defined by R in tail computations.

Finally we come to the notion of monotonicity. Each cycle C of a computation
of a restarting automaton contains a unique configuration c|αqβ$ in which a
Rewrite instruction is applied. Then |β$| is the right distance of C, denoted
by Dr(C).

We say that a sequence of cycles Sq = (C1, C2, · · · , Cn) is monotone if
Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn). A computation is monotone if the corre-
sponding sequence of cycles is monotone, and an RRWW-automaton is called
monotone if all its computations that start with initial configurations are mono-
tone. Observe that the tails of the computations do not play any role here. We
use the prefix mon- to denote the classes of monotone restarting automata.

Let j be a positive integer. A sequence of cycles Sq = (C1, C2, · · · , Cn) is
called j-monotone if there is a partition of Sq into j (scattered) subsequences
that are monotone [15]. A computation is j-monotone if the corresponding
sequence of cycles is j-monotone. Finally, an RRWW-automaton is called j-
monotone if all its computations that start with initial configurations are j-
monotone. The prefix j-mon- is used to denote the corresponding classes of
restarting automata.

3 A Reduction from RWW- to R-Automata

Here we describe a sequence of two complexity preserving reductions that first
replace an RWW-automaton by an RW-automaton and then replace the latter
by an R-automaton.

Theorem 1. [12] A language L is accepted by a (deterministic) RWW-automa-
ton if and only if there exist a (deterministic) RW-automaton M1 and a regular
language R such that L = L(M1) ∩ R holds.

The RW-automaton M1 and the regular language R are obtained as follows.
Let M be an RWW-automaton with input alphabet Σ and tape alphabet Γ for
a language L ⊆ Σ∗. The corresponding RW-automaton M1 is obtained from M
by simply taking Γ as input alphabet, and the regular language R is chosen
as R := Σ∗. The identity mapping on Σ∗ is obviously a reduction from the
language L to the language L(M1). Thus, we have the following consequence.

Corollary 1. The language class L(RWW) is reducible in linear time and con-
stant space to the language class L(RW).
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Continuing our discussion of M and M1, assume that the RWW-automaton
M is j-monotone for some integer j ≥ 1. Then each computation of the RW-
automaton M1 that begins with an initial configuration of the form q0c|w$ with
w ∈ Σ∗ is j-monotone. However, this does not necessarily mean that M1 is
also j-monotone, as there could exist computations of M1 that start with an
initial configuration of the form q0c|w$ with w ∈ Γ ∗ � Σ∗ and that are not j-
monotone. Hence, Corollary 1 does not immediately carry over to j-monotone
RWW-automata. If we want to establish a corresponding reduction for a par-
ticular j-monotone RWW-automaton, then we must inspect the resulting RW-
automaton in detail to verify j-monotonicity.

Next we turn to a reduction that replaces arbitrary Rewrite operations by
delete operations. Let Γ1 = {a1, . . . , am} be a finite alphabet, k a positive integer,
and Γ2 := {0, 1, c, d}. We define the encoding ϕk,m : Γ ∗1 → Γ ∗2 as the morphism
that is induced by the mapping

ai �→ c1m+1−i0i(cd1m+10m+1)k (1 ≤ i ≤ m).

Then, for all 1 ≤ i ≤ m, |ϕk,m(ai)| = (m + 2) · (2k + 1). Observe that ϕk,m

is indeed an encoding. It has the following important property.

Lemma 1. For all u ∈ Γ k
1 and v ∈ Γ ∗1 , if |v| < k, then ϕk,m(v) is a scattered

subword of ϕk,m(u), that is, ϕk,m(v) is obtained from ϕk,m(u) by simply deleting
some factors from the latter.

Based on encodings of this form we obtain our second reduction.

Theorem 2. If a language L is accepted by an RW-automaton M with tape
alphabet Γ1 of size m and read/write window of size k, then there exists an R-
automaton M ′ which accepts the language ϕk,m(L) ⊆ Γ ∗2 . In addition, if M is
j-monotone for some j ≥ 1, then so is M ′.

Proof. Let L := L(M), and let p := (m + 2) · (2k + 1). We construct an R-auto-
maton M ′ with the tape alphabet Γ2 and the read/write window of size k · p.
Whenever the distance of the read/write window of M ′ from the left end of its
tape is a multiple of p, then M ′ checks whether the read/write window contains
a string that is the image ϕk,m(u) of some u ∈ Γ ∗1 . In the negative it rejects
immediately, in the affirmative it performs an action that simulates the actual
transition of M . It follows that M ′ accepts the language ϕk,m(L).

In order to show that the above construction preserves j-monotonicity, it
is enough to notice that, for each computation of M ′ on each word ϕk,m(w)
(w ∈ Γ ∗1 ), there exists a computation of M on w such that the sequence of
right distances of M ′ is obtained by multiplying each element in the appropriate
sequence of right distances of M by the constant p. For an input x such that
x �∈ ϕk,m(Γ ∗1 ), M ′ works in a j-monotone fashion on the longest prefix of x
that belongs to the set ϕk,m(Γ ∗1 ). As soon as M ′ proceeds beyond this prefix,
it realizes that its tape content is not of the correct form, and it rejects at this
point. Thus, the overall computation of M ′ on x is j-monotone. �

Thus, we have the following result.
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Corollary 2.

(a) The language class L(RW) is reducible in linear time and constant space to
the language class L(R).

(b) For each j ≥ 1, the language class L(j-mon-RW) is reducible in linear time
and constant space to the language class L(j-mon-R).

As the class L(RWW) contains NP-complete languages [6], Corollaries 1 and 2
yield the following result.

Corollary 3. The class L(R) contains NP-complete languages.

4 L(2-mon-R) Versus GCSL

The language La := { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 } is not accepted by
any RRW-automaton [5]. However, the following result can be shown.

Lemma 2. La ∈ CRL.

This example yields the following non-inclusion result.

Theorem 3. CRL is not contained in the class L(RRW).

As a consequence we see that neither CRL nor GCSL is contained in any of
the classes L(R), L(RR), or L(RW), either.

Each growing context-sensitive language is accepted by a one-way auxiliary
pushdown automaton that is simultaneously logarithmically space- and polyno-
mially time-bounded [2], while the language Lcopy := {ww | w ∈ {a, b}∗ } is
not accepted by any one-way auxiliary pushdown automaton within logarithmic
space [8], and so Lcopy �∈ GCSL. As GCSL is closed under bounded morphisms [1],
it follows that L′copy := {w#w | w ∈ {a, b}∗ } is not in GCSL, either. However,
the following can be shown by using a technique from [6].

Lemma 3. L′copy ∈ L(RWW).

Proof. The language L′copy is accepted by an RWW-automaton M that works
as follows, given an input of the form u#v with u, v ∈ {a, b}∗:

Phase 1: The prefix u and the factor v are compressed into words of the form u1
and v1, respectively. This compression is performed from left to right, encoding
two symbols into one auxiliary symbol, leaving the # symbol unchanged. Here
a problem arises from the fact that M restarts immediately after each Rewrite
step. Hence, we need a special technique that directs M to try to alternate the
compression steps on u and on v. Actually we can only force M to perform
one or more compression steps on u between any two compression steps on v.
Accordingly, this process succeeds if and only if u and v are both of even length
or both of uneven length, and if v is a subsequence of u (see [6] for details).
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Phase 2: Once the compression has succeeded, M checks whether u1 and v1 are
of the same length. This is done by simply erasing the two symbols surrounding
the symbol # in each cycle. �

Hence, L(RWW) is not contained in GCSL. By applying the reductions from
the previous section this observation yields the following stronger result.

Theorem 4. L(R) is not contained in GCSL.

Proof. As L′copy ∈ L(RWW), there exists, by Theorem 1, an RW-automaton
M1 and a regular language R such that L′copy = L(M1) ∩ R. As GCSL is closed
under the operation of intersection with regular languages [1], it follows that
L̂ := L(M1) �∈ GCSL.

Then, by Theorem 2, the language L′ := ϕk,m(L̂) is in L(R), where k is the
size of the read/write window of M1 and m is the size of its tape alphabet. As
the class GCSL is closed under inverse morphisms [1], it follows that L′ �∈ GCSL,
thus completing the proof. �

Actually the following stronger version of Theorem 4 holds.

Theorem 5. L(2-mon-R) is not contained in GCSL.

Proof. The RWW-automaton M for L′copy described in the proof of Lemma 3
can be shown to actually be 2-monotone. Then we use the reductions described
in Theorems 1 and 2. As the latter reduction preserves j-monotonicity in general,
it remains to verify that the RW-automaton M1 that is obtained from the RWW-
automaton M is indeed 2-monotone. �

As a consequence we obtain the following.

Corollary 4. L(2-mon-R(R)), L(2-mon-R(R)W), L(R(R)), and L(R(R)W) are
incomparable under set inclusion to the language classes CRL and GCSL.

5 L(2-mon-R) Contains NP-Complete Languages

As seen in Section 3 the class L(R) contains NP-complete languages. Here we
will improve upon this result considerably by showing that already 2-monotone
R-automata accept NP-complete languages. This will be done by presenting a
generic proof that an encoded version of each language from NP is contained in
L(2-mon-RWW), and by then applying the reductions from Section 3.

5.1 An Encoding of Languages from NP

Let L be a language that belongs to the complexity class NP, and let M be a
nondeterministic one-tape Turing machine which accepts L in polynomial time,
that is, L(M) = L, and there exists a fixed polynomial p(n) such that, for each
input x ∈ L of length n, M has an accepting computation of length at most p(n).
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Without loss of generality we may assume that the tape of M is infinite only
to the right, and that the input is on the initial section of the tape. We will
prove that an encoded version of the language L is accepted by a 2-monotone
RWW-automaton M2.

Let L ⊆ Σ∗0 , let &,# �∈ Σ0 be two additional symbols, and let Σ := Σ0 ∪
{&,#}. We define the language L1 ⊂ Σ∗ as follows:

L1 := {w&m−n#(&m#)p | w ∈ L, |w| = n,m ≥ n, and there exists
a computation of M on w that reaches an accepting
state in at most p steps, using less than m tape cells}.

The function f : Σ∗0 → Σ∗ that maps a word w ∈ Σn
0 onto the string

w&p(n)−n+1#(&p(n)+1#)p(n) is clearly a log-space reduction from L to L1. In
particular, this means that L1 is NP-complete, if L is. Below we will outline our
arguments that show that the language L1 is accepted by an RWW-automaton
M2 that is 2-monotone.

Let Λ be the tape alphabet of the Turing machine M . In order to describe
configurations of M , we define the additional alphabet Λstate := Q×Λ, where Q
denotes the set of states of M . Then a possible configuration of M is presented
in the obvious way by a word of the form y1Hy2, where y1, y2 ∈ Λ∗ and H =
〈q, s〉 ∈ Λstate. The initial configuration of M for an input word w := w1w2 . . .wn,
where w1, . . . , wn ∈ Σ0, is written as 〈q0, w1〉w2 · · ·wn, where q0 ∈ Q denotes
the initial state of M .

5.2 A High-Level Description of the RWW-Automaton M2

Let x = x0# . . .#xp#, where xi ∈ (Σ0 ∪ {&})∗, 0 ≤ i ≤ p. For checking that
x ∈ L1, we will use the following overall strategy:

(1) We check that x0 is of the form x0 = y0&m0 for some word y0 ∈ Σn
0 ,

n ≥ 0, and some integer m0 ≥ 0. In the affirmative y0 is transformed into
the initial configuration of M on input y0. This yields the syllable x′0 :=
〈q0, y0,1〉y0,2 . . . y0,n&m0 .

(2) Then the following steps are performed iteratively for i = 1, 2 . . . , p :
(a) Check that |x′i−1| ≥ |xi| and that xi ∈ &+.
(b) In the previous round the syllable xi−1 was transformed into a word of

the form x′i−1 = yi−1&mi−1 for some configuration yi−1 of the Turing
machine M and some integer mi−1 ≥ 0. If yi−1 is already a final config-
uration of M , then yi is taken to be yi−1, otherwise a transition of M is
chosen nondeterministically that is to be performed in the configuration
yi−1, and yi is chosen as the configuration that M reaches from yi−1 by
performing this step. If |yi| ≥ |xi|, then the input is rejected, otherwise
mi is taken to be the integer mi := |xi| − |yi|, and the syllable xi is
transformed into the word x′i := yi&mi .

(3) If yp is an accepting configuration, and if |x′0| = |x′p|, then the input is
accepted, otherwise it is rejected.
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Unfortunately this strategy cannot be implemented on an RWW-automaton
in the form it is described above, because of the restrictions of the RWW-model.
Here the facts that an RWW-automaton performs a Restart immediately after
each Rewrite transition, and that it forgets its actual state whenever it makes
a Restart pose some problems. In addition we want to ensure that the RWW-
automaton is 2-monotone.

In particular, a problem is caused by step 2(b), which replaces the syllable
xi by (a slightly revised form of) the factor yi−1&mi−1 . This task is similar to
the task of verifying that the syllables u and v of a given string u#v coincide.
The simplest way known (to us) for solving the latter task by a 2-monotone
RWW-automaton is described in the proof of Lemma 3. Fortunately, the task
described in step 2(b) above can be solved similarly.

However, between these two tasks there are two major differences:

– We must realize a sequence of ‘copying’ moves that work on an unbounded
sequence of consecutive syllables.

– In each round we do not simply make a copy of a factor, but we also make
some changes to the copy, as we have to take into consideration the effect of
the next step of the Turing machine M .

Concerning the first issue, we observe the following, returning to the similar
but simpler task of accepting the language L′copy. For each integer j ≥ 3, the

language L
(j)
copy := { (w#)j−1w | w ∈ {a, b}∗ } is accepted by a 2-monotone

RWW-automaton that employs the following strategy:

For an input w of the form w1# . . .#wj , where w1, . . . , wj ∈ {a, b}∗, it is
checked sequentially whether wi+1 is a subsequence of wi for all i = 1, . . . , j − 1,
by using only two monotone sequences. For each value of i, the first sequence
performs Rewrite steps within the syllable wi, and the second sequence performs
Rewrite steps within the syllable wi+1. Finally, the final versions of the syllables
w2, . . . , wj−1 are removed, and it is checked whether |w1| = |wj | holds. The
corresponding Rewrite transitions can be combined with the first of the above
sequences into a single monotone sequence. Together with the condition that
wi+1 is a subsequence of wi for all values of i, |w1| = |wj | implies that all the
factors wi are identical, that is, the word w belongs to the language L

(j)
copy.

The same technique is used in steps (2) and (3) above to check that all
syllables x0, x1, . . . , xp have the same length.

Concerning the second problem, we observe that the syllables yi−1&mi−1 and
yi&mi differ at most on a factor of length two. Moreover, there are only three
possible positions for this factor, depending on whether the head of M moves
left, right or stays at the same position during the step from yi−1 to yi.

Assume that the envisioned RWW-automaton M2 has discovered two consec-
utive syllables x′i−1 and xi (bordered by #-symbols) of the current tape content
such that x′i−1 = yi−1&mi−1 , where yi−1 is a possibly correct configuration of the
Turing machine M . Then M2 needs to verify that xi ∈ &∗ satisfying |xi| ≤ |x′i−1|,
to guess a step of M , and to replace xi by yi&mi .
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For solving this task, M2 will realize the following algorithm, where we take
x′i−1[0] to denote the left endmarker c| (for i = 1) or the #-symbol to the left of
xi−1 (for i > 1), and xi[0] to denote the #-symbol to the left of xi for all i ≥ 1:

algorithm copy and modify;
begin j := 0;

while j < |x′i−1| do
begin

if x′i−1[j + 1] �∈ Λstate then
xi[j] := x′i−1[j]; j := j + 1

else
guess a transition step Δ of M ;
if Δ is not applicable to yi−1 then halt and reject;
xi[j, j + 2] := Δ(x′i−1[j, j + 2]);
j := j + 3

end
end

An implementation of the above algorithm on an RWW-automaton requires
some specific techniques. In order to remember the actual value of j, the RWW-
automaton needs to apply Rewrite steps alternatingly to the syllables x′i−1 and xi.
In fact, we cannot ensure that these Rewrite steps alternate between the two syl-
lables, but we can at least make sure that between any two Rewrite steps on xi,
there is at least one Rewrite step on x′i−1 (compare the proof of Lemma 3). A
further complication arises from the requirement that each Rewrite step must
be length-reducing. However, this can be overcome by using an appropriate en-
coding compressing several symbols into a single new symbol. In summary we
obtain the following technical result (see [7] for details).

Theorem 6. If L belongs to the complexity class NP, then the language L1 that
is obtained from L as described above is accepted by an RWW-automaton that is
2-monotone.

By taking the tape alphabet as input alphabet, we obtain an RW-automaton
M3 from the RWW-automaton M2 above. We claim that with M2 also M3 is
2-monotone. To verify this claim we need to show that also those computations
of M3 that start from a restarting configuration q0c|w$ that is not an initial
configuration of M2 are 2-monotone. By Theorem 2 this yields the following.

Theorem 7. The class L(2-mon-R) contains NP-complete languages.

6 Conclusions

As the class L(RRWW) is contained in the complexity class NP, the result above
gives the following complexity theoretical characterization, where LOG(L) de-
notes the closure of a language class L under log-space reductions.

Corollary 5. LOG(L(2-mon-R)) = NP.
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Thus, modulo log-space reductions the 2-monotone R-automata have the
same expressive power as the RRWW-automata. Therefore a different gener-
alization of the notion of monotonicity is needed to capture the phenomena of
natural languages, a notion that is stronger than that of monotonicity (as we
need to express non-context-free phenomena), but that is weaker than that of
2-monotonicity (as we want an efficient implementation).
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1 Fachbereich Mathematik/Informatik, Universität Kassel, Kassel, Germany
{tju, otto}@theory.informatik.uni-kassel.de

2 Department of Computer Science, Charles University, Prague, Czech Republic
mraz@ksvi.ms.mff.cuni.cz, platek@ksi.ms.mff.cuni.cz

Abstract. The notion of left-monotonicity is introduced for the restart-
ing automaton, and the expressive power of the various types of left-
monotone restarting automata is studied. We concentrate on the
deterministic classes, as here the results differ greatly from those for
the corresponding classes of (right-) monotone restarting automata.

1 Introduction

The original motivation for introducing the restarting automata in [1] was the
desire to model the so-called analysis by reduction of natural languages. In fact,
many aspects of the work on restarting automata are motivated by the basic tasks
of computational linguistics. The notions developed in the study of restarting
automata give a rich taxonomy of contraints for various models of analysers and
parsers. Already several programs based on the idea of restarting automata are
being used in Czech and German (corpus) linguistics (cf., e.g., [6, 10]).

A (two-way) restarting automaton, RLWW-automaton for short, is a device
M with a finite-state control and a read/write window of a fixed size. This
window moves along a tape containing a word delimited by sentinels until the
control decides (nondeterministically) that the content of the window should
be rewritten by some shorter string. After a rewrite, M continues to move its
window until it either halts and accepts, halts and rejects, or restarts, that is, it
moves its window to the leftmost position, enters the initial state, and continues
with the computation. Thus, each computation of M can be described through a
sequence of cycles. In fact, M cannot only be considered as a device for accepting
a language, but it can also be interpreted as a ‘rewriting system,’ as each cycle
replaces a factor of the tape content by a shorter factor, in this way performing
a rewrite of the tape content.
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Also various restricted versions of the restarting automaton have been con-
sidered. Here the RRWW-automata, which can only move their window from
left to right along the tape, and the RWW-automata, which are in addition re-
quired to perform a restart step immediately after executing a rewrite operation
are of particular interest. Further a monotonicity property was introduced for
RLWW-automata which is based on the idea that from one cycle to the next
in a computation, the actual place where a rewrite is performed does not in-
crease its distance from the right end of the tape. The monotone restarting
automata essentially model bottom-up one-pass parsers. As it turned out the
monotone RRWW- and RWW-automata characterize the class CFL of context-
free languages, while the monotone deterministic RRWW- and RWW-automata
as well as several restricted versions thereof all characterize the class DCFL of
deterministic context-free languages [2]. Also a generalization of the notion of
monotonicity was introduced, which models the generalization from bottom-up
one-pass parsers to bottom-up multi-pass parsers [11]. For an integer j ≥ 1, a
restarting automaton is called j-monotone if, for each of its computations, the
corresponding sequence of cycles can be partitioned into at most j subsequences
such that each of these subsequences is monotone. It is shown in [11] that by
increasing the value of the parameter j, the expressive power of the (nondeter-
ministic) restarting automata without auxiliary symbols is increased. However,
for the various types of deterministic RRWW-automata, the parameter j does
not influence the class of accepted languages [12, 13].

Here we consider the notion of left-monotonicity for restarting automata,
which is another constraint motivated by linguistic considerations. This notion
is based on the idea that from one cycle to the next in a computation, the actual
place where a rewrite takes place does not increase its distance from the left end
of the tape. Although the notions of (j-) monotonicity and (j-) left-monotonicity
seem to be symmetric to each other, it turns out that for deterministic restarting
automata, these notions lead to completely different forms of behaviour. The
combination of various types of j-monotonicity and j′-left-monotonicity for these
types of restarting automata has been studied in [3].

After restating the basic definitions and results in Section 2, we will show
in Section 3 that various types of left-monotone deterministic restarting auto-
mata with auxiliary symbols are equally powerful. In particular, we introduce
restarting automata that are shrinking, that is, they are weight-reducing with
respect to an arbitrary weight function, and we will see that even this gener-
alization does not increase the power of left-monotone deterministic restarting
automata. In Section 4 we will establish hierarchies with respect to the degree
of left-monotonicity for the various types of deterministic restarting automata
without auxiliary symbols, and in Section 5 we will compare these hierarchies to
each other. Finally we will separate the classes of languages that are accepted
by the 2-left-monotone deterministic RLWW-automata and R(R)WW-automata
from the classes of languages that are accepted by the left-monotone determin-
istic RLWW-automata and R(R)WW-automata, respectively (Section 6). In the
concluding section several problems concerning left-monotone restarting auto-
mata are outlined that still remain open.
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2 Definitions and Notation

For an alphabet Δ, we denote by Δ+ the set of non-empty words over Δ, while
Δ∗ denotes the set of all words over Δ including the empty word ε. Further, N+
will denote the set of positive integers. Finally, for a class A of automata, L(A)
will denote the class of languages that can be accepted by the automata from A,
and for a particular automaton M , L(M) denotes the language that is accepted
by M .

We start by restating in short the definitions of the various models of the
restarting automaton that will be considered in this paper.

A two-way restarting automaton, RLWW-automaton for short, is a nonde-
terministic one-tape machine M with a finite-state control and a read/write
window of a fixed size k ≥ 1. The work space is delimited by the left sentinel
c and the right sentinel $, which cannot be removed from the tape. The tape
alphabet Γ of M contains the input alphabet Σ and possibly a finite number
of auxiliary symbols. The behaviour of M is described by a transition relation
δ that associates to a pair (q, u) consisting of a state q and a possible content u
of the read/write window a finite set of possible transition steps. There are five
types of transition steps (see, e.g., [7, 9] for details):

1. A move-right step (MVR) causes M to shift the read/write window one
position to the right and to change the state. However, the window cannot
move across the right sentinel $.

2. A move-left step (MVL) causesM to shift the read/write window one position
to the left and to change the state. Of course, the window cannot move across
the left sentinel c.

3. A rewrite step (Rewrite) causes M to replace the content u of the read/write
window by a shorter string v, and to change the state. Further, the read/write
window is placed immediately to the right of the string v.

4. A restart step (Restart) causes M to move its read/write window to the left
end of the tape, so that the first symbol it sees is the left sentinel c, and to
re-enter the initial state q0.

5. An accept step (Accept) causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation.

A configuration of M is a string αqβ, where q represents the current state, αβ
is the current content of the tape, and it is understood that the head scans the
first k symbols of β or all of β when |β| ≤ k. Here either α = ε and β ∈ {c}·Γ ∗·{$}
or α ∈ {c} ·Γ ∗ and β ∈ Γ ∗ · {$}. A restarting configuration is of the form q0cw$,
where q0 is the initial state of M and w ∈ Γ ∗; if w ∈ Σ∗, then q0cw$ is an initial
configuration. Thus, initial configurations are special restarting configurations.

In general, the automaton M is nondeterministic, that is, there can be two or
more instructions with the same left-hand side (q, u). If that is not the case, the
automaton is deterministic. For brevity, the prefix det- will be used to denote
classes of deterministic restarting automata.
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We observe that any computation of a two-way restarting automaton M con-
sists of certain phases. A phase, called a cycle, starts in a restarting configuration,
the head moves along the tape performing MVR, MVL, and Rewrite operations
until a Restart operation is performed and thus a new restarting configuration
is reached. If no further Restart operation is performed, any finite computation
necessarily finishes in a halting configuration – such a phase is called a tail. We
require that M performs exactly one Rewrite operation during any cycle – thus
each new phase starts on a shorter word than the previous one. During a tail at
most one Rewrite operation may be executed.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, finishes by executing an Accept
instruction.

Now we define those subclasses of RLWW-automata that are relevant for our
investigation.

An RLW-automaton is an RLWW-automaton whose working alphabet coin-
cides with its input alphabet. Note that each restarting configuration is initial
in this case.

An RL-automaton is an RLW-automaton whose Rewrite instructions can be
viewed as deletions, that is, if (q′, v) ∈ δ(q, u), then v is obtained by deleting
some symbols from u.

An RRWW-automaton is an RLWW-automaton which does not use any MVL
instructions. Analogously, we obtain RRW-automata and RR-automata.

Finally, an RWW-automaton is an RRWW-automaton which restarts imme-
diately after rewriting, that is, for these automata each Rewrite transition is im-
mediately followed by a Restart transition. Analogously, we obtain RW-automata
and R-automata.

The transition relation of an RWW-automaton M can be described by a
sequence of meta-instructions of the form (R, u → v), where R is a regular
expression. On trying to execute this meta-instruction M will get stuck (and so
reject) starting from the configuration q0cw$, if w does not admit a factorization
of the form w = w1uw2 such that cw1 ∈ L(R). On the other hand, if w does admit
such a factorization, then one such factorization is chosen nondeterministically,
and q0cw$ is transformed into q0cw1vw2$.

Now we come to the various notions of monotonicity. Each cycle C contains a
unique configuration cαqβ$ in which a Rewrite instruction is applied. Then |β$|
is the right distance of C, denoted by Dr(C), and |cα| is the left distance of C,
denoted by Dl(C).

We say that a sequence of cycles Sq = (C1, C2, · · · , Cn) is monotone (or right-
monotone) if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), and we say that this sequence
is left-monotone if Dl(C1) ≥ Dl(C2) ≥ . . . ≥ Dl(Cn).

For each prefix X ∈ {right, left}, a computation is X-monotone if the corre-
sponding sequence of cycles is X-monotone. Observe that the tail of the
computation does not play any role here. An RLWW-automaton M is called
X-monotone if all its computations are X-monotone. The prefix X-mon- will be
used to denote the corresponding classes of restarting automata. Observe that
right-monotonicity is the concept called monotonicity in [2].
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3 Left-Monotone Deterministic Restarting Automata

Here we concentrate on the expressive power of the left-monotone deterministic
restarting automaton. In order to simplify the discussion of the technical details
we introduce a slight generalization of the restarting automaton. A restarting
automaton M with working alphabet Γ is called shrinking if there exists a weight
function ϕ : Γ → N+ such that, for each Rewrite step u → v of M , ϕ(u) > ϕ(v)
holds. Here ϕ is extended to a morphism ϕ : Γ ∗ → N by taking ϕ(ε) := 0 and
ϕ(wa) := ϕ(w) + ϕ(a) for all w ∈ Γ ∗ and a ∈ Γ . The prefix s- will be used to
denote the classes of shrinking restarting automata.

Our first result states that for shrinking deterministic restarting automata
that are left-monotone, the RWW-model is as powerful as the RLWW-model.

Theorem 1. L(det-left-mon-sRLWW) = L(det-left-mon-sRWW).

Proof. Let M be a deterministic RLWW-automaton that is left-monotone and
shrinking with respect to the weight function ϕ. We will construct a left-mono-
tone deterministic sRWW-automaton M ′ such that M ′ accepts the same lan-
guage as M . In fact, given an input w, M ′ will simulate the computation of M
on input w. For defining M ′ we need to analyze the behaviour of M in detail.

Each cycle of a computation of M consists of three phases:

1. M scans its tape by repeatedly performing MVR-steps and MVL-steps.
2. M executes a Rewrite step, replacing a factor u of the current tape content

by a string v satisfying ϕ(v) < ϕ(u).
3. M rescans its tape by repeatedly performing MVR-steps and MVL-steps until

it eventually accepts, rejects, or restarts.

To simplify the following discussion we may assume without loss of generality
that in phase 1, M first scans its tape completely from left to right by performing
a sequence of MVR-steps.

In contrast to the behaviour of M described above, M ′ simply scans its tape
from left to right, performing a number of MVR-steps, until it decides to execute
a Rewrite transition, thus ending the current cycle. Hence, if M ′ is to simulate
a cycle of M , then it needs to determine the information that M collects during
phases 1 and 3 before it can execute the simulation of the actual Rewrite step.
Thus, M ′ will have to perform some preparatory cycles before it can actually
execute the simulation of the Rewrite step of the current cycle of M .

Assume that the actual configuration of M at the start of the current cycle
is q0cxuy$, where x, u, y ∈ Γ ∗, and u is the factor that M is about to replace
by the word v in this cycle. In order to simulate this cycle M ′ will first encode
information of the behaviour of M on the suffix y by performing a number of
preparatory cycles that replace this suffix letter by letter from right to left by
an encoding of y. This encoding replaces each letter c of y by a symbol that
together with the letter c encodes a crossing sequence describing the possible
behaviour of M at the tape square containing the letter c.



254 T. Jurdziński et al.

The actual simulation of the Rewrite step of M , which replaces the syllable
u by the string v, is performed by M ′ on the border between the prefix of the
tape content that is still unencoded, and the suffix of the tape content that has
already been encoded.

As M is left-monotone, the Rewrite step in the next cycle of M is performed
at the same position or to the left of the position of the current Rewrite step.
Hence, M ′ may first have to execute some further encoding cycles before it can
simulate the next Rewrite step of M . Thus, we see that with M , also M ′ is
left-monotone. Details can be found in [8]. �

Our second technical result shows that, for deterministic RWW-automata
that are left-monotone, the standard (length-reducing) variant is as powerful as
the shrinking variant.

Theorem 2. L(det-left-mon-sRWW) = L(det-left-mon-RWW).

Proof. We will essentially follow a simulation technique presented in [4]. This
method was initially used for two-pushdown automata, but because of the corre-
spondence between the class of Church-Rosser languages and L(det-RWW) [5], it
can be generalized to restarting automata. However, if one adjusts this simulation
directly to RWW-automata, then the resulting automaton is not left-monotone,
even if the automaton being simulated is. Thus, we must follow through the
steps of the simulation from [4] and discuss the changes that are required in
order to guarantee that the property of being left-monotone is preserved by the
simulation.

Here we just give a high level description of the simulation of a left-monotone
deterministic RWW-automaton M that is shrinking with respect to a weight
function ϕ by a left-monotone (length-reducing) deterministic RWW-automaton.
This simulation consists of three major steps, which are outlined below. Again
details can be found in [8].

1. For the shrinking deterministic RWW-automaton M , we first construct a
shrinking deterministic RWW-automaton M ′ such that L(M ′) = L(M) and each
Rewrite transition of M ′ reduces the weight of the actual tape content exactly by
one (using a method from [4] Lemma 4). Thus, we can assume in the following
that each Rewrite transition of M reduces the weight exactly by one.
2. Let # be a new symbol, and let h : Γ ∗ → (Γ ∪ {#})∗ be the morphism that
is induced by the mapping h(a) := a#ϕ(a)−1 (a ∈ Γ ). Thus, for each string
w ∈ Γ ∗, the string h(w) ∈ (Γ ∪ {#})∗ satisfies the condition |h(w)| = ϕ(w). We
construct a standard (length-reducing) RWW-automaton M1 that simulates the
computation of M on the tape content cw$ (w ∈ Γ ∗) step by step on the tape
content ch(w)$. Hence, L(M1) = h(L(M)). Further, if M is left-monotone, then
so is M1 . Moreover, M1 is length-reducing, as each Rewrite step of M reduces
the weight by one, and so each Rewrite step of M1 reduces the length of the
actual tape content by one.
3. To complete the construction we would now like to simulate the automaton
M1 by an RWW-automaton that, instead of processing an input of the form
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h(x) (x ∈ Σ∗), works directly with the original input x. However, it might
be impossible to simulate the computation of M1 on h(x) in a length-reducing
manner on the input x itself, as already the length of h(x) will in general be
larger than the length of x. In order to overcome this problem, we follow a
strategy from [4] (Proof of Theorem 5):
(a) First an automatonM2 is used to replace the input string x by a ‘compressed’

version of h(x). As compression ratio we take the number 2μ, where μ :=
maxa∈Γ ϕ(a).

(b) Then an automaton M3 is used that, in each cycle, simulates 2μ cycles of M1.

The compression of ratio 2μ guarantees that the compressed version xc of
h(x) satisfies |xc| ≤ |x|, and by simulating 2μ cycles of M1 in a single cycle of
M3 we guarantee that the length of the actual tape content of M3 is reduced
by exactly one per cycle. Thus, we see that the composition of M2 and M3 is
length-reducing. Further, M2 can clearly be realized in left-monotone manner,
and also M3 is left-monotone, as M1 is.

However, the composition of M2 and M3 is clearly not left-monotone, as the
‘compression phase’ realized by M2, in which the tape content is completely
rewritten, precedes the ‘real’ simulation. In order to make this part of the sim-
ulation left-monotone, we skip the compression phase. Instead we adopt the
strategy of ‘lazy’ compression, that is, we start on the uncompressed input and
use the compression in combination with the simulation of Rewrite steps (that
is, we combine M2 and M3 into one automaton). In fact, we can make sure
that the tape content always consists of an uncompressed prefix that is followed
by a compressed suffix, and that each Rewrite step just replaces a prefix of the
compressed part. �

From Theorem 1 and Theorem 2 we immediately obtain the following result.

Corollary 1. L(det-left-mon-sRLWW) = L(det-left-mon-RLWW) =
L(det-left-mon-RRWW) = L(det-left-mon-RWW).

It remains to derive a characterization of the class L(det-left-mon-RWW)
in terms of other language classes. As L(det-mon-RLWW) properly contains
the class of deterministic context-free languages [9], it follows that the class
L(det-left-mon-RWW) properly contains the reversals of all deterministic con-
text-free languages, but it still remains to classify the additional expressive power
of the left-monotone deterministic RWW-automata.

4 Degrees of Non-monotonicity for Restarting Automata

A sequence of cycles Sq = (C1, C2, · · · , Cn) is called j-right-monotone for some
j ∈ N, if there is a partition of Sq into j (scattered) subsequences that are right-
monotone. Analogously, the notion of j-left-monotonicity is defined. Obviously
a sequence of cycles (C1, C2, · · · , Cn) is not j-right-monotone if and only if there
exist 1 ≤ i1 < i2 < ... < ij+1 ≤ n such that Dr(Ci1) < Dr(Ci2) < · · · <
Dr(Cij+1). A corresponding observation holds for j-left-monotonicity.
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Let j ≥ 1, and let X ∈ {right, left}. A computation is j-X-monotone if the
corresponding sequence of cycles is j-X-monotone. Again the tail of the computa-
tion does not play any role here. An RLWW-automaton is called j-X-monotone if
all its computations are j-X-monotone. The prefixes j-X-mon- are used to denote
the corresponding classes of restarting automata. Observe that 1-X-monotonicity
coincides with X-monotonicity.

It is known that the degree of right-monotonicity does not influence the
expressive power of deterministic restarting automata.

Theorem 3. [12, 13] DCFL = L(det-right-mon-X) = L(det-j-right-mon-X) for
each j ∈ N+ and for each X ∈ {R,RR,RW,RRW,RWW,RRWW}.

On the other hand, based on the degree of left-monotonicity, infinite hierar-
chies for the various types of deterministic restarting automata without auxiliary
symbols have been obtained.

Theorem 4. [3] L(det-j -left-mon-X) � L(det-(j+1)-left-mon-X) for each j ∈ N+
and for each X ∈ {R,RR,RW,RRW}.

To derive a corresponding separation result for deterministic RL(W)-auto-
mata, we consider the languages

L̄j := { an1bn1an2bn2 . . . anj bnj | n1 ≥ n2 ≥ . . . ≥ nj ≥ 1 } (j ≥ 1).

Lemma 1. For j ≥ 2, L̄j ∈ L(det-j-left-mon-RL) � L((j − 1)-left-mon-RLW).

Proof. For a word of the form (a+b+)j , we denote the factors from a+b+ as
‘blocks.’ We construct a deterministic RL-automaton M for the language L̄j as
follows. In each cycle M removes a factor ab from the r-th block if r is the largest
index such that the parity of the number of a’s (and b’s) in all previous blocks is
equal to the parity of the number of a’s in the block r. In this way we ensure that
it is not possible to make two rewrites in the r-th block without any rewrite in
the previous block. M accepts if and only if the tape content is (ab)j . It is easily
seen that M does indeed accept the language L̄j , and that it is j-left-monotone.

On the other hand, by analysing the possible computations of an RLW-
automaton M ′ for the language L̄j on inputs of the form (anbn)j for large values
of n, it can be shown [13] that M ′ is not (j − 1)-left-monotone. �

This gives the following separation results.

Theorem 5. L(det-j-left-mon-X) � L(det-(j + 1)-left-mon-X) for each j ∈ N+
and for each X ∈ {RL,RLW}.

5 Comparing the Classes of the Same Degree of
Left-Monotonicity to Each Other

It is shown in [3] that, for any j ≥ 2, the language

L(j) := { am1bm1am2bm2 . . . amj bmj | m1,m2, . . . ,mj > 0 }
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cannot be accepted by any (j−1)-left-monotone deterministic RRW-automaton.
Contrasting this result, we see below that auxiliary symbols do help in accepting
this language.

Proposition 1. For each j ≥ 2, L(j) ∈ L(det-left-mon-RWW).

Proof. Let j ≥ 2. We describe an RWW-automaton M for the language L(j).

(1.) First M moves its read/write window all the way to the right, verifying
that the given input is of the form w := am1bn1am2bn2 . . . amj bnj for some
positive integers mi, ni, 1 ≤ i ≤ j. In the negative it rejects immediately, in
the affirmative it goes to (2.).

(2.) Using the auxiliary symbol Bj , M rewrites the suffix bnj into Bnj/2
j within

nj/2 cycles. If nj is not an even number, then the factor ab of amj bnj is
deleted in this process.

(3.) Then within the next nj/2 cycles it is checked whether mj = nj holds
by deleting factors of the form a2Bj . This phase ends by generating an
occurrence of the auxiliary symbol Aj in the affirmative.

(4.) Now steps (2.) and (3.) are repeated for the factors amj−1bnj−1 , amj−2bnj−2

down to am1bn1 .

Obviously M is a deterministic RWW-automaton, and it is easily seen that
M accepts the language L(j) and that it is left-monotone. Hence, we see that
L(j) ∈ L(det-left-mon-RWW). �

Together with the fact that L(j) �∈ L(det-(j − 1)-left-mon-RRW), this yields
the following separation results.

Theorem 6.
For each j ∈ N+, L(det-j -left-mon-R(R)W) � L(det-j -left-mon-R(R)WW).

Actually the above example languages will give us still further separation
results. Let j > 1, and let M be a det-left-mon-RWW-automaton for the lan-
guage L(j). By including all the auxiliary symbols of M in the input alphabet,
we obtain a det-left-mon-RW-automaton M ′ for some language L̂(j). Observe
that L̂(j) ∩ {a, b}∗ = L(j) holds, which allows to derive the following fact.

Lemma 2. For each j > 1, L̂(j) �∈ L(det-(j − 1)-left-mon-RR).

Thus, we obtain the following separation results.

Theorem 7.
For each j ∈ N+, L(det-j-left-mon-R(R)) � L(det-j-left-mon-R(R)W).

For deriving a corresponding result separating the R(W)-classes from the
RR(W)-classes, we consider the example language Lt := Lt1 ∪ Lt2 ∪ Lt3 ∪ Lt4,
where

Lt1 := { aman(bc)nfam | m,n > 0 },
Lt2 := { aman(bc)ibjam | m,n, j > 0, i ≥ 0, n = i+ j },
Lt3 := { an(bc)icj | n, j > 0, i ≥ 0, n = 2(i+ j)},
Lt4 := { am(bc)nfakf | m,n, k > 0 }.
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For this language we have the following technical result.

Lemma 3. Lt ∈ L(det-left-mon-RR) � L(det-RW).

This technical result yields the following proper inclusion results.

Theorem 8.
For each j ≥ 1, L(det-j-left-mon-R(W)) � L(det-j-left-mon-RR(W)).

For the automata without auxiliary symbols, we have the following separation
results in contrast to Corollary 1.

Theorem 9.
For each j ∈ N+, L(det-j -left-mon-RR(W)) � L(det-j -left-mon-RL(W)).

Proof. The language La := { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 } is easily seen
to be accepted by a deterministic left-mon-RL-automaton. On the other hand,
this language is not accepted by any deterministic RRW-automaton, because in
each cycle such an automaton must rewrite a string of La into another string
belonging to La. This means that on a long input word, it would have to delete
a factor of the form aibi or aib2i for some i > 0 without knowing which of the
two cases applies. �

Let Lc := { cwcw | w ∈ {a, b}∗ and |w| = 2n for some n ≥ 0 }. Concerning
this language we have the following result.

Proposition 2. Lc ∈ L(det-2-left-mon-RLWW) � L(RLW).

Further, let Mc be a 2-left-monotone deterministic RLWW-automaton for
Lc, let M ′

c be the RLW-automaton that is obtained from Mc by including the
auxiliary symbols of Mc into the input alphabet, and let L′c := L(M ′

c).

Proposition 3. L′c ∈ L(det-2-left-mon-RLW) � L(RL).

Together, these technical results yield the following consequences.

Theorem 10.
For each j ≥ 2, L(det-j-left-mon-RL(W)) � L(det-j-left-mon-RL(W)W).

Here it remains open whether a corresponding result also holds for left-
monotone RL(W)-automata.

6 Separating the Second from the First Level of
Left-Monotonicity for Restarting Automata with
Auxiliary Symbols

As the language Lc is not context-free, while L(left-mon-RLWW) = CFL [13],
Proposition 2 yields the following additional result.
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Corollary 2. L(det-left-mon-RLWW) � L(det-2-left-mon-RLWW).

In the following we will extend this result to RWW- and RRWW-automata.
For doing so we consider the language

L := { an
5a

n
4a

m
3 a

m
2 a

p
1 | n,m, p > 0 } ∪ { an

5a
l
4a

m
3 a

p
2a

p
1 | n �= l, n, l,m, p > 0 }.

Proposition 4. L ∈ L(det-2-left-mon-R).

Proof. We describe a deterministic R-automaton M for L by a sequence of
meta-instructions:

(1) (c · a∗5, a2
5a

2
4 → a5a4), (4) (ca5a4 · a+

4 · a+
3 · a∗2, a2

2a
2
1 → a2a1),

(2) (ca5a4 · a∗3, a2
3a

2
2 → a3a2), (5) (ca5 · a+

5 · a4 · a+
3 · a∗2, a2

2a
2
1 → a2a1),

(3) (ca5a4a3a2 · a+
1 · $, Accept), (6) (ca5a4 · a+

4 · a+
3 · a2a1$, Accept),

(7) (ca5 · a+
5 · a4 · a+

3 · a2a1$, Accept).

It is easily seen that M accepts the language L. Notice further that M makes
two sequences of Rewrite steps: first it rewrites on the border between a∗5 and a∗4
and then it rewrites on the border between a∗3 and a∗2 or on the border between
a∗2 and a∗1. Thus, M is 2-left-monotone. �

The announced separation results are a consequence of the following result.

Theorem 11. [8] L �∈ L(det-left-mon-RRWW).

Thus, we obtain the following proper inclusions.

Corollary 3. L(det-left-mon-R(R)WW) � L(det-2-left-mon-R(R)WW).

Further, as the language L is obviously deterministic context-free, we also
obtain the following non-inclusion result.

Corollary 4. L(det-mon-RRWW) = DCFL �⊆ L(det-left-mon-RRWW).

7 Concluding Remarks

We have seen that between the language classes defined by the various types
of left-monotone deterministic restarting automata very different relations hold
than between the classes that are defined by the corresponding types of right-
monotone deterministic restarting automata. However, it is still open whether
the degree of left-monotonicity gives infinite hierarchies also for the deterministic
automata with auxiliary symbols. Further, we conjecture that the equality ex-
pressed by Corollary 1 even extends to the language classes L(det-left-mon-RLW)
and L(det-left-mon-RL) in contrast to the situation for j-left-monotone determin-
istic RL- and RLW-automata (j ≥ 2) as expressed by Theorem 10.
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Abstract. In this paper we study the model of a finite state automa-
ton interacting with infinite two-dimensional geometric environments.
We show that the reachability problem for a finite state automaton in-
teracting with a quadrant of the plane extended by a power function, a
polynomial function or a linear function is algorithmically undecidable,
by simulating a Minsky machine. We also consider the environment de-
fined by a parabola which impedes the direct simulation of multiplication.
However we show that the model of a finite automaton interacting inside
a parabola is also universal.

1 Introduction

Finite state automata arose as models of transducers of discrete information, i.e.
models interacting with their environments [9]. Automata on picture languages
[3, 17], automata in labyrinths [2, 10, 11], communicating automata [14], multi-
counter automata [15, 7], a model of a computer in the form of interaction of a
control automaton [4] are examples of such an interaction.

The fundamental problem for systems where an automaton interacts with
(possibly infinite) environment is the reachability problem: “Does a global state
S (state of the automaton and state of the environment) belong to the set of
states reachable from an initial global state”. The reachability problem has
connections to many classical problems in automata theory such as diagnos-
tic problems, distinguishability problems, searching in labyrinths, etc. One of
the standard methods to show the undecidablity of the reachability problem for
some model is to prove that this computational model is universal.

In this paper we consider the computational power of the reactive system,
where an input/output automaton interacts with a two-dimensional geometric
environment. In particular we consider the reactive system that includes a finite
state automaton (FSA) A and an infinite environment E where
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– an automaton A is a kind of well-known 4-way finite state automaton intro-
duced by Blum and Hewitt [1] that reads the symbol from the environment
and reacts by changing its internal state and then moving up, down, left or
right to a neighbouring cell of the environment E;

– an environment E is a two-dimensional language over one-letter alphabet
[13, 3] which is defined as a subspace of two-dimensional integer grid bounded
by a number of integer value functions.

It was shown in [12, 13] that the problem of checking indistinguishable states
for two finite automata in two-dimensional environment E over a one-letter al-
phabet (geometric environment) is decidable if and only if the reachability prob-
lem for a finite state automaton in E is decidable. The geometric environment
is called efficient if the reachability problem is decidable and non-efficient other-
wise. It is known from [5, 6, 13] that the environment defined by a set of rectangles
of fixed height and the environment represented by a regular or context-free ex-
pression are efficient. There are many other classes of efficient environments with
or without holes that can be constructed by substitution of one cell in efficient
environment by another efficient environment [13].

It was proved in [2] that the sets of input-output words generated by automata
interacting with geometric environments without holes, namely, rectangles of un-
limited height are, in general, context-sensitive languages. Thus the reachability
problem for finite automata interacting with geometric environments is funda-
mentally difficult and algorithmically unsolvable, in the general case. In spite
of known undecidability results it is interesting to identify new classes of non-
efficient environments, i.e. where a model of finite automaton interacting with
these environments is universal.

We start from the environment defined by a quadrant of the plane that corre-
sponds to the Minsky machine model. First we consider an extension of quadrant
of the plane, changing the vertical border by power, polynomial or linear func-
tions. In particular we show that the finite automaton interacting with these
environments can simulate a Minsky machine. Then we consider an environ-
ment which impedes the direct simulation of multiplication. However we show
on example of an environment defined by parabola:

Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2}
that FSA interacting with Dn2,n2 is again a universal model of computation.

The additional motivation for the investigation of automaton dynamics in
geometric environments is that the different constraints on the environments can
be also seen as constraints on the values of counters in multicounter automata.
So we hope that the new results about n-dimensional geometric environments
could lead to the new results for n-counter automata.

The long-term goal of this work is to characterize the whole class of geometric
environments to obtain a better understanding of the border between decidabil-
ity and undecidability for the reachability problems. While such an ambitious
goal is not feasible at the moment, we instead investigate several special cases
of geometric environments, that we believe is a sound and reasonable first step
towards our ultimate goal.
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2 Automata Interacting with Two-Dimensional
Environments

In what follows we use traditional denotations N,Z, Zn,Q+ for the sets of natu-
rals (non-negative integers), integers, bounded integers such that {i|i ∈ Z, |i| ≤
n} and the set of positive rational numbers respectively.

Definition 1. Let A = (S, I,O, δA, λA, s0) be a finite deterministic everywhere
defined Mealy automaton, where S, I and O are the sets of states, input symbols,
and output symbols, respectively, and δA : S × I → S and λA : S × I → O are
transition function and function of outputs respectively and s0 ∈ S is an initial
state.

Definition 2. The geometric environment is defined by possibly infinite (count-
able) Moore automaton E = (D,O, I, δE , λE), where D ⊆ Z×Z is a set of states,
O = Z1 × Z1 is a set of input symbols, I = 2Z1×Z1 is a set of output symbols,
δE : D ×O → D such that

δE((x, y), (d1, d2)) =
{

(x+ d1, y + d2), (x+ d1, y + d2) ∈ D
undefined, (x+ d1, y + d2) /∈ D

is the partial transition function and λE : D → I such that

λE(x, y) = {(d1, d2) ∈ Z1 × Z1|(x+ d1, y + d2) ∈ D}

is the function of outputs.

We call the set of states D - the nodes of the environment, the symbols of
the output alphabet I - the labels of nodes, and the function of outputs λE -
the function of labels of nodes. In such case we can say that two-dimensional
geometric environment is defined by an automaton E.

Two nodes (x1, y1) and (x2, y2) of the same environment are neighbours iff
(x2 − x1, y2 − y1) ∈ Z1 × Z1. All neighbours of the node (x, y) form the Moore
neighbourhood of range 1.

We can also consider finite automaton in two-dimensional environment as a
kind of 4-way finite state automaton introduced by Blum and Hewitt [1] that
reads the symbol (Moore neighbourhood of range 1) from the environment and
reacts by changing its internal state and then moving up, down, left or right to
a neighbouring cell of an environment E.

Let an automaton A and environment E interact with each other then an
output signal of each of them coincides with an input signal of the other at
each instant of time. So in case of 4-way finite state automaton the set of out-
put symbols of an automaton A (set of input symbols of an environment E) is
{Left,Right, Up,Down} and the input symbols of A (the output symbols of E)
form a matrix O3×3 that represents the Moore neighbourhood of range 1 for a
position (x, y):
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001
011
001

011
111
010

001
011
111

011
110
110

000
011
110

000
110
100

110
110
100

111
010
000

Left Left

Left

Left

Down

Right Right

Right

Right

Up Down Up

Up Down

Up Down

Fig. 1. An example of a geometric environment represented by Moore automaton

⎛⎝ o−1,1 o0,1 o1,1
o−1,0 o0,0 o1,0
o−1,−1 o0,−1 o1,−1

⎞⎠ ,

where oi,j = 1 if (x+i, y+j) ∈ D, otherwise oi,j = 0 and i, j ∈ Z1 (see Figure 1).
Let us describe the process of interaction between automaton and environ-

ment. An automaton A initiates the interaction with an environment E starting
from an initial state s0 and a node r ∈ D. Let A be in a state s and a node r, then
automaton moves to the state δA(s, λE(r)) and the node δE(r, λA(s, λE(r))).

The configuration of an automaton in an environment we denote by pair (s, r),
where s is state of an automaton, and r is a node of the environment We also
say that configuration (s′, r′) is directly reachable from (s, r) if s′ = δA(s, λE(r))
and r′ = δE(r, λA(s, λE(r))) and we denote it by (s, r) → (s′, r′). We define →
as a binary relation over the set configurations.

The trajectory of an automaton A in an environment E is a sequence of
reachable configurations. By (s, r)..(s′, r′) we denote a trajectory of an automa-
ton that reach configuration (s′, r′) from (s, r).

3 From Minsky Machine to More Exotic Models of
Computation

In this section we start from geometric interpretation of a well-known model of
two-counter Minsky machine that can increment and decrement counters by one
and test them for zero. It is known that Minsky machine is a universal model of
computations and it is equivalent to Turing machine [16].

It is easy to see that the behaviour of Minsky machine can be interpreted
as a 4-way finite state automaton that interacts with (or moves in ) the quadrant
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of the plane DQ = {(x, y)|x ∈ N, y ∈ N}, where the border of a quadrant
is the following set of nodes: GQ = {(x, y)|x ≥ 0, y = 0, x ∈ N, y ∈ N } ∪
{(x, y)|x = 0, y ≥ 0, x ∈ N, y ∈ N }. The node (x, y) of the environment EQ =
(DQ, O, I, δE , λE) represents the values x and y of two counters and the empty
counters of Minsky machine corresponds to the situation when the automaton is
on the borders of the geometric environment EQ (i.e. in a cell of the environment
that does not allow to move at least in one direction).

Now we can define some exotic models of computation by changing the shape
of the geometric environment. Let us consider an extension of the quadrant of the
plane, changing the vertical border by a power function, a polynomial function,
a linear function or a sublinear function. Let a ∈ Q+ then by Da·n, Dna and
Dan we denote the following environments:

Da·n = {(x, y) ∈ Z × Z|y ≥ a · |x|, x < 0; y ≥ 0, x ≥ 0}

Dna = {(x, y) ∈ Z × Z|y ≥ |x|a, x < 0; y ≥ 0, x ≥ 0}

Dan = {(x, y) ∈ Z × Z|y ≥ a|x|, x < 0; y ≥ 0, x ≥ 0}

In particular in the next section we show that a 4-way finite state automaton
in the following three types of geometric environments Da·n, Dna and Dan where
a = 2 can simulate a Minsky machine (see Figure 2).

It is not difficult to see that if the left border of the quadrant is extended by
a sublinear function (in other words it cannot be covered by a sector in the half
plane), for example:

Dsub = {(x, y) ∈ Z × Z|y ≥ log|x|, x < 0; y ≥ 0, x ≥ 0}

then a 4-way automaton in this environment cannot simulate a universal com-
putational model. This environment actually is not essentially two-dimensional
environment, i.e. the dynamics in this model can be simulated by a finite state
automaton interacting with one-dimensional environment.

Another interesting case is an environment which impedes the direct simu-
lation of multiplication as it can be done in the environment DQ, for example
the environment bounded by a parabola. However we show that a finite state
automaton interacting with the environment defined by parabola:

Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2}

is a universal model of computation.
The main aim of these results is to support our thesis that the reachability

problem is undecidable for any essentially two-dimensional environments.

3.1 Undecidability Results

In this subsection we consider several types of geometric environments with
borders defined by integral functions -a · x., -xa. and -ax..
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D Da
n a

n

D
Q

D
a n

Fig. 2. Universal models of computation represented by different geometric
environments

Theorem 1. A finite state machine in the geometric environments D2n, Dn2 ,
D2n can simulate a Minsky machine.

Proof: The proof of this fact is based on a simulation of Minsky machine by a
4-way finite state automaton in the above geometric environments.

First of all we use a well-known trick [19] to get an equivalent model of two
counter machine where one of the counters is used as a scratchpad. Another,
counter holds an integer whose prime factorization is 2a · 3b. The exponents a,
b can be thought of as two virtual counters that are being simulated. If the real
counter is set to zero then incremented once, that is equivalent to setting all
the virtual counters to zero. If the real counter is doubled, that is equivalent
to incrementing a, and if it’s halved, that’s equivalent to decrementing a. By a
similar procedure, it can be multiplied or divided by 3, which is equivalent to
incrementing or decrementing b.

Let the finite state machine A interacting withDQ can reach the configuration
(s, a′, b′) from configuration (s, a, b) by one step. Now we can construct another
FSA A′ interacting with DQ, that can reach the configuration (s, 2a′ ·3b′

, 0) from
configuration (s, 2a · 2b, 0) by a finite number of states.

To check if a virtual counter such as a (b) is equal to zero, just divide the
real counter by 2 (3), see what the remainder is, then multiply by 2 (3) and add
back the remainder. That leaves the real counter unchanged. The remainder will
have been nonzero if and only if a (b) was zero.

The Geometric Environment D2n. The straightforward modification of the
FSA A′ gives the result for any sector environment formed by two lines in the
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half plane. Since the integral line defines the regular shifts of the border, we only
need to amortise these shifts by adding a fixed number of right or left moves
according to the chosen direction.

The Geometric Environment Dn2 . The case where one of the borders does
not have a periodic shifts is less trivial. However we use again the same scheme
and prove that interaction of finite state automaton A′ with the quadrant en-
vironment DQ can be reduced in some sense to the interaction of finite state
automaton B with environment Dn2 . In case of nonperiodic border we need to
choose another method to code the counter in the new environment, and more
sophisticated method of amortisation during the operations of multiplication
and division.

Let the boundary point (−x, x2) ∈ Gn2 represents a number x. Now let us
show that we can convert any point (−x, x2) to the point (−2x, (2x)2), that
stands for multiplication of x by 2.

Fig. 3. Simulation of the multiplication by 2 in the geometric environment Dn2

First, FSA converts point (−x, x2) to point (x2 − x, 0) by moving right and
down until it reaches the border. Then it converts the point (x2 − x, 0) to the
(−2x, 4x2 + 4x) by repeating the following pattern “moving four times up and
one time left” until it reaches the border. Since the inequality (2x)2 ≤ 4x2+4x ≤
(2x+ 1)2 holds for any natural number we can state that the point (−2x, 4x2 +
4x) belongs to the border Gn2 . Finally the point (−2x, 4x2 + 4x) can be con-
verted to the point (−2x, 4x2) by a finite number of moves down along the border,
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since all points {(−2x,w)|(2x)2 < w ≤ (2x+ 1)2} are the boundary points. Let
us consider how to perform multiplication on 3 in this environment. In other
words we need to show that from any point (−x, x2) we can reach the point
(−3x, (3x)2). We start just as in previous case. We convert point (−x, x2) into
(x2 − x, 0) and then to (−3x− 3, 9x2 + 18x+ 27), which is the boundary point
according to the inequality (3x+ 3)2 < 9x2 + 18x+ 27 < (3x+ 4)2, which holds
for all x ∈ N. After that FSA moves from point (−3x − 3, 9x2 + 18x + 27) to
point (−3x, (3x)2) along the border via 3 corners (−3x − 3, (3x+ 3)2), (−3x −
2, (3x+ 2)2) and (−3x− 1, (3x+ 1)2). In a similar way we construct automaton
that can divide on 2 and 3 in Dn2 .

The Geometric Environment D2n . Let us prove that we can perform the
operations of multiplication and division by a finite state automaton in the
geometric environment D2n .

Let the boundary point p = (− log2x!, x) stands for a positive number x in
the geometric environment D2n . The finite automaton can move from the point
(− log2x!, x) to the new point (0, x− log2x!) by repeating a pair of operations
move left and down until it reaches the border. Then the finite automaton can
reach the border point r by repeating two moves up and one move left. Thus, r
is either (− log2x!, 2x) or (− log2x! − 1, 2x+ 2).

Now let us show how to check by a finite automaton in which part of E it
reaches the boundary point r from the initial point p. We use the simple property
that if n is an even number then (2n mod 4) = 0 and (2n+2 mod 4) �= 0, if n is an
odd number then (2n mod 4) �= 0 and (2n+2 mod 4) = 0. We first check by finite
automaton if the ordinate of the point p is odd or even and then we check the
ordinate of the point r on divisibility by 4. So if r’s ordinate is divisible on 4 and
p’s ordinate is odd then the automaton is in the point (− log2x!−1, 2x+2) and
it can move down to the point (− log2x!− 1, 2x) =(− log22x!, 2x), otherwise it
is in the point (− logx!, 2x) =(− log22x!, 2x).

In a similar way we can show that finite automaton can multiply on 3 and
divide on 2 and 3 in the geometric environment D2n .

Theorem 2. A finite state automaton in the geometric environment

Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2}

can simulate a Minsky machine.

Proof: Let the boundary point (x, x2) stands for a positive number x in the
geometric environment Dn2,n2 . A finite automaton cannot multiply in Dn2,n2 if
it touches the border only by a constant number of times as we have in case of
Dn2 or D2n . So in case of Dn2,n2 we introduce some kind of cycle that will be
used for multiplication and division.

Let us prove that a finite automaton will always reach a point (2x, (2x)2)
from a point (x, x2) using th following procedure:
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Multiplication by 2 in Dn2,n2

Input: A point (x, x2)
Output: A point (2x, (2x)2)

repeat
repeat

Do 1 move Up and 1 move Left;
until FSA is on the border
repeat

Do move Right;
until FSA is on the border
Do 4 moves Up;

until FSA is on the cell

⎛⎝ 1 1 1
1 1 0
1 1 0

⎞⎠
repeat

Do move Down;

until FSA is on the cell

⎛⎝ 1 1 0
1 1 0
1 0 0

⎞⎠
A finite automaton can reach the boundary point (−(x + 1), (x + 1)2) =

(−(x+ 1), x2 + 2x+ 1) in Dn2,n2 from a point (x, x2) by repeating the pattern
“up and left”, since it will move left for exactly 2x+1 cells. It is easy to see that
an automaton will reach the point (−(x + 1), (x + 1)2 + c) from (x, x2 + c) for
any 0 ≤ c < 2x + 1 by repeating the same pattern “up and left”. Then it can
reach the point (x+1, (x+1)2 + c) by moving “right” until it reaches the border
and the point (x+ 1, (x+ 1)2 + c+ 4) doing additional 4 moves “up”.

Let us call the sequence of moves from the point (x, x2 + c) to the point
(x+ 1, (x+ 1)2 + c+ 4) a cycle. In the above procedure of multiplication by 2,
starting from the point (x, x2) the finite automaton will meet the cell⎛⎝1 1 1

1 1 0
1 1 0

⎞⎠
for the first time exactly after x cycles since it corresponds to the point (2x, 4x2+
4x). If the automaton will move down from the cell⎛⎝1 1 1

1 1 0
1 1 0

⎞⎠ to

⎛⎝1 1 0
1 1 0
1 0 0

⎞⎠
it reaches the point (2x, 4x2) and the multiplication by 2 is completed (see
Figure 4). Similarly we can perform multiplication by 3 if we slightly change the
previous procedure. If we change our cycle in a such way that the automaton
will do 3 additional moves up instead of 4 it reaches the cell
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0−1 2

1 

2 

3 

4 

−2 1

0 

(2,4)−>(4,16)  

. . . . . .

. . .

Fig. 4. An example of multiplication of x = 2 by 2 in the geometric environment
Dn2,n2 . The operation of multiplication is simulated by the movement of a finite au-
tomaton from (x, x2) to (2x, (2x)2)

⎛⎝1 1 1
1 1 0
1 1 0

⎞⎠
for the first time after 2x cycles and will be in the position (3x, 9x2 + 6x).
After that it moves down in the same way as in previous case to reach the
point (3x, (3x)2). Another pair of operation such that division by 2 and 3 an
automaton can perform in the following way. The automaton moves from point
(x, x2) to the point (−x, x2) and back. In such way it perform 4x steps or moves.
In order to check the divisibility of x by 2 (or 3) it needs to check the divisibility
of 4x by 8 (or 12) that can be done using a finite memory.

4 Future Work and Conclusion

As we mentioned before the long-term goal of this work is to characterize the class
of non-efficient geometric environments. It follows from the developed methods
of simulating a Minsky machine in the considered geometric environments that
there are several factors that have an influence on the status of reachability
problem: border markers such as corners in the environments, the continued
growth expansion of the environment, etc. These factors create essentially two-
dimensional environment that cannot be modelled by one-dimensional systems,
like push-down or one-counter automata. So it could be interesting to define more
formal condition for essentially two-dimensional systems. On the other hand we
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still have unanswered questions about the reachability problem for a number of
specific environments. One of these cases is the environment in N2 bounded by
logarithmic function:

Dlog = {(x, y) ∈ N × N|y ≤ log(x)}.
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Abstract. In [4, page166], it is asked what influence the complemen-
tarity relation plays as far as the expressiveness of sticker systems and
Watson-Crick automata are concerned. Here, we give the answer: (al-
most) none! More precisely, we show that every language L of a sticker
system or a Watson-Crick automaton is the language of such a system
with a one-to-one complementarity relation. Our second group of re-
sults shows that L is the inverse block coding of a language from the
same family over any nontrivial fixed complementarity relation. Finally,
we prove that any Watson-Crick automaton can be transformed into an
equivalent simple and all-final one. This implies the collapse of parts of
the hierarchy introduced in [4].

1 Introduction

The advent of bioinformatics has blessed the formal language community with
several new mechanisms that generate or accept words. Often, these new mech-
anisms explore the interplay of standard mechanisms with the Watson-Crick
complementarity. Sticker systems [2] use ligation of incomplete DNA-molecules
to perform computations. The idea goes back to Adleman’s experiment where
ligation can take place at both ends of the molecule independently. In order to
go beyond regular languages, sticker systems synchronize the extension at the
two ends of a molecule. While these systems generate molecules, Watson-Crick
automata [1] accept DNA-molecules. They are based on the idea of finite au-
tomata running on a complete DNA-molecule. Since such a molecule is not a
single word but consists of two strands, a Watson-Crick automaton is equipped
with two heads that move with different speeds on the two strands.

As usual in theoretical computer science, the conceptual content of a phe-
nomenon becomes clear only if one abstracts some aspects. In case of sticker
systems and Watson-Crick automata, the obvious candidates for abstraction
are the concrete alphabet and the form of the complementarity relation.1 The

1 On the other hand, to the knowledge of the authors, Watson-Crick D0L-systems
[3, 6] have only been considered with one-to-one complementarity relations.
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main topic of this paper is the question (raised in [4–page 166]) what influence
these abstractions have. The answer is the same for both, sticker systems and
Watson-Crick automata. If one fixes the alphabet and varies the complementar-
ity relation, the language family does not change significantly. More precisely,
any sticker system or Watson-Crick automaton over the alphabet V can be re-
placed by an equivalent such device over V with a one-to-one complementarity
relation. This result also holds for subfamilies of sticker systems and Watson-
Crick automata as defined in the literature. If the alphabet V is allowed to
change as well, we run into the trouble of alphabets of different size and there-
fore need squeezing mechanisms. Here, we use block codes, i.e., words of a fixed
length over V that represent letters of V ′. Using such block codes, we obtain that
any alphabet with any non-trivial complementarity relation generates all sticker
or Watson-Crick languages. Again, this result holds for most of the subfamilies
considered in the literature as well.

The final section of this paper deals with the hierarchy of Watson-Crick
languages defined by the above mentioned subfamilies of these automata. We
show that any Watson-Crick automaton can be transformed effectively into an
equivalent one where any state is accepting and where any transition of the
automaton involves the movement of at most one of the two heads. This result
implies the collapse of parts of the hierarchy presented in [4].

2 Basic Definitions

Let V be an alphabet with V = {C,G, T,A} being the most prominent example.
This alphabet V comes equipped with a binary relation ρ called complementar-
ity.2 The standard complementarity on the alphabet {C,G, T,A} is the relation
{(A, T ), (T,A), (G,C), (C,G)}. In our investigations, we will come across the set
V ∗ × V ∗ of pairs of words and the set ρ∗ of finite sequences of pairs from ρ.
Elements from the latter can naturally be considered as elements from V ∗×V ∗,
namely the sequence

(
a1
b1

)(
a2
b2

)
. . .

(
an

bn

)
corresponds to the pair

(
a1a2...an

b1b2...bn

)
.

For notational simplicity, we write
[

a1a2...an

b1b2...bn

]
ρ

for the word over ρ. Consider-

ing the standard alphabet, it makes sense to call these words from ρ∗ complete
molecules over (V, ρ). By O(V ), we denote the set (V ∗ × {ε}) ∪ ({ε} × V ∗) -
its elements are one-stranded molecules (where we distinguish molecules with an
empty second strand - i.e., elements of V ×{ε} - from those with an empty first
strand). Finally, W (V, ρ) denotes the set W (V, ρ) = (O(V )×ρ+ ×O(V ))∪O(V )
of molecules, its elements will usually be denoted by small Greek letters from
the beginning of the alphabet. The molecule

α =

((
u1

u2

)
,

[
v1
v2

]
ρ

,

(
w1

w2

))
will also be abbreviated

(
u1

u2

) [
v1
v2

]
ρ

(
w1

w2

)
.

2 Note that, differently from [4], we do not require ρ to be symmetric - this is done
just for convenience and does not affect the results.
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If u1 = u2 = w1 = w2 = ε, we consider α as an element of ρ∗, i.e., as a
complete molecule. A partial concatenation ·ρ on W (V, ρ) is defined as follows:

–
(

u1
ε

)
·ρ
(

v1
ε

)
=

(
u1v1

ε

)
and

(
ε

u2

)
·ρ
(

ε
v2

)
=

(
ε

u2v2

)
.

–
(

u1
u2

) [
v1
v2

]
ρ

(
w1
w2

)
·ρ
(

x1
x2

)
=

(
u1
u2

) [
v1y1
v2y2

]
ρ

(
z1
z2

)
if yi is the prefix of wixi of

length min{|w1x1|, |w2x2|}, yizi = wixi, and
(

y1
y2

)
∈ ρ∗.

–
(

x1
x2

)
·ρ
(

u1
u2

) [
v1
v2

]
ρ

(
w1
w2

)
is defined analogously.

–
(

u1
u2

) [
v1
v2

]
ρ

(
w1
w2

)
·ρ
(

x1
x2

) [
y1
y2

]
ρ

(
z1
z2

)
=

(
u1
u2

) [
v1w1x1y1
v2w2x2y2

]
ρ

(
z1
z2

)
if(

u1
u2

) [
v1
v2

]
ρ

(
w1
w2

)
·ρ
(

x1
x2

)
=

(
u1
u2

) [
v1w1x1
v2w2x2

]
ρ

(
ε
ε

)
.

If none of these cases applies, the concatenation α ·ρ β is undefined. One can
check that this operation, if defined, is associative and that any molecule is a
finite product of elements from ρ ∪ (V × {ε}) ∪ ({ε} × V ).

Definition 1. A sticker system (over (V, ρ)) is a tuple S = (V, ρ,A,D) con-
sisting of a finite set A ⊆ W (V, ρ) \ O(V ) of axioms and a finite set D ⊆
W (V, ρ) ×W (V, ρ) of rules.

Let C0(S) = A and, for k ∈ N, define Ck+1(S) to be the set of molecules
α ·ρ β ·ρ γ with β ∈ Ck(S) and (α, γ) ∈ D, i.e., Ck(S) contains those molecules
that can be derived from an axiom in A using k derivation steps.

Definition 2. Let S = (V, ρ,A,D) be a sticker system. Its molecule language
LM(S) ⊆ ρ∗ is the set of complete molecules β ∈

⋃
k∈N

Ck(S)∩ρ∗. The language
of S is the set

L(S) = {u ∈ V + | ∃v ∈ V + :
[u
v

]
ρ
∈ LM(S)}.

Definition 3. A Watson-Crick automaton M is a tuple (V, ρ,K, s0, T, F ) where
K is a finite set of states, s0 ∈ K is the initial state, T ⊆ K × (V ∗ × V ∗) ×K
is a finite transition relation, and F ⊆ K is a set of accepting states.

Note that a Watson-Crick automaton is just a gsm where input- and output-
alphabet equal V and this alphabet is equipped with a complementarity relation.
Since Watson-Crick automata are special gsms, we can borrow the definition of
runs from there:

A run of the Watson-Crick automaton (V, ρ,K, s0, δ, F ) is a sequence

q1, x1, q2, x2, . . . , xn, qn+1

with qi ∈ K and xi ∈ V ∗×V ∗ such that (qi, xi, qi+1) ∈ T for 1 ≤ i ≤ n. Its label
is the pair of words x1x2 . . . xn where we concatenate the elements xi ∈ V ∗×V ∗

componentwise. The run is successful if q1 = s0 and qn+1 ∈ F . The language of
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molecules LM(M) accepted by M is the set of all complete molecules that label
a successful run of M . Then, the language of the Watson-Crick automaton M is
defined by

L(M) =
{
u ∈ V +

∣∣∣∣∃v ∈ V + :
[u
v

]
ρ
∈ LM(M)

}
.

Note that writing
[

u
v

]
ρ
, we require implicitely that the ith letter of u and

the ith letter of v belong to the complementarity relation ρ (in particular, u and
v have the same length). Let AWK(V, ρ) denote the set of languages accepted
by some Watson-Crick automaton over (V, ρ) (“A” stands for “arbitrary”) and
AWK=

⋃
(V,ρ)AWK(V, ρ) be the set of languages accepted by some Watson-Crick

automaton whatever the complementarity relation is.
A Watson-Crick automaton (V, ρ,K, s0, T, F ) is

– stateless if K = F = {s0},
– all-final if K = F ,
– simple if (p,

(
u
v

)
, q) ∈ T implies u = ε or v = ε, and

– 1-limited if (p,
(

u
v

)
, q) implies |uv| = 1.

We abbreviate “stateless” by “N” (for “no state”), “all-final” by “F”, “sim-
ple” by “S”, and “1-limited” by “1”. Then FSWK(V, ρ) is the set of languages
accepted by an all-final and simple Watson-Crick automaton over (V, ρ). The
terms N1WK, NSWK, F1WK, SWK, 1WK, and NWK can be understood anal-
ogously. The left diagram in Fig. 1 (page 281) depicts the inclusion structure
as shown in [4] (REG is the family of regular languages in V + and CS that of
context-sensitive ones).

3 One-to-One Complementarity Relations Suffice

For a set V , let ΔV denote the identity relation {(a, a) | a ∈ V } over the
domain V . In this section, we prove that any Watson-Crick language over (V, ρ)
is also a Watson-Crick language over (V,ΔV ) and that the same holds for sticker
languages. Actually, the result holds for any one-to-one relation ρ′ on V in place
of ΔV - in order to keep notations simple, we give the proof for the identity
relation, only.

Theorem 4. Let M = (V, ρ,K, s0, T, F ) be a Watson-Crick automaton over
the complementarity relation (V, ρ). Then one can construct a Watson-Crick
automaton M ′ = (V,ΔV ,K, s0, T

′, F ) over (V,ΔV ) with L(M) = L(M ′).

We have to construct a Watson-Crick automaton M ′ over (V,ΔV ) that ac-
cepts the molecule

[
u
u

]
ΔV

if there exists v ∈ V ∗ such that
[

u
v

]
ρ

is accepted by
M . Hence the second head of M ′ will read the same word as the first one. When
doing so, it will “guess” the word v and simulate the behavior of M . The formal
details of the proof are as follows:
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Proof. Let

T ′ = {(p, u, w, q) ∈ K×(V ∗×V ∗)×K | ∃v ∈ V ∗ : (p, u, v, q) ∈ T and
(w
v

)
∈ ρ∗} .

First, let u = a1a2 . . . an ∈ L(M). Then there exists a word v = b1b2 . . . bn
with (ai, bi) ∈ ρ and a successful run of M on the pair (u, v). Hence there exist
indices 1 = i1 ≤ i2 ≤ . . . ik = n+ 1 and 1 = j1 ≤ j2 ≤ . . . jk = n+ 1 and states
q� ∈ K (1 ≤ � ≤ k) such that

q1 = s0, (q�, ai�
. . . ai�+1−1, bj�

. . . bj�+1−1, q�+1) ∈ T (1 ≤ � < k), and qk+1 ∈ F .

Since (ai, bi) ∈ ρ, this implies (q�, ai�
. . . ai�+1−1, aj�

. . . aj�+1−1, q�+1) ∈ T ′.
Hence we found a successful run in M ′ labeled (u, u). Since any word is ΔV -
complementary to itself, this implies u ∈ L(M ′) and therefore L(M) ⊆ L(M ′).

Conversely, let u = a1a2 . . . an ∈ L(M ′). Since the only word complementary
to u is u itself, there exists a successful run of M ′ labeled (u, u). Hence there
exist indices 1 = i1 ≤ i2 ≤ . . . ik = n + 1 and 1 = j1 ≤ j2 ≤ . . . jk = n + 1 and
states q� ∈ K (1 ≤ � ≤ k) such that

q1 = s0, (q�, ai�
. . . ai�+1−1, aj�

. . . aj�+1−1, q�+1) ∈ T ′ (1 ≤ � < k), and qk+1 ∈ F.

The construction of T ′ implies the existence of letters bi ∈ V with (ai, bi) ∈ ρ
and (q�, ai�

. . . ai�+1−1, bj�
. . . bj�+1−1, q�+1) ∈ T ′. Hence we find a successful run

in M ′ labeled (u, b1b2 . . . bn). Since (ai, bi) ∈ ρ, the words u and b1b2 . . . bn are
ρ-complementary implying u ∈ L(M). Hence, indeed, L(M ′) ⊆ L(M). ��

A short look at the proof reveals that this theorem holds for all subclasses
of Watson-Crick automata as defined above, i.e., if M is an automaton having
any combination of these properties, then M ′ satisfies the same combination of
properties. So, e.g., SWK(V, ρ) =SWK(V,ΔV ).

Next, we want to prove a result analogous to Thm. 4 for sticker systems. The
idea is again quite similar to the one that worked perfectly well for Watson-Crick
automata: the sticker system guesses a matching second strand of a molecule over
(V, ρ) while building a molecule over (V,ΔV ). The guessing now takes a slightly
different form and is somewhat hidden in the mapping : W (V, ρ) → 2W (V,ΔV )

defined below. For two sets A,B ⊆ W (V,ΔV ), let A ·ΔV
B = {α ·ΔV

β ∈
W (V,ΔV ) | α ∈ A, β ∈ B}. This operation on the power set of W (V,ΔV ) is
associative and defined everywhere.

Lemma 5. There is a function : W (V, ρ) → 2W (V,ΔV ) satisfying

(1)
[

a
b

]
ρ

=
{[

a
a

]
ΔV

}
,
(

a
ε

)
=

{(
a
ε

)}
and

(
ε
b

)
=

{(
ε
a

)
|
(

a
b

)
∈ ρ

}
and

(2) α ·ΔV
β = α ·ρ β whenever α ·ρ β is defined, and α ·ΔV

β = ∅ otherwise.

Furthermore, γ is complete iff γ contains only complete molecules (for γ ∈
W (V, ρ)).
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Proof. First, we define the function in question:(u
ε

)
=

{(u
ε

)}
,( ε

v

)
=

{( ε
u

)∣∣∣ (u
v

)
∈ ρ∗

}
,(

u1

u2

)[
v1
v2

]
ρ

(
w1

w2

)
=

(
u1

u2

)
×
{[

v1
v1

]
ΔV

}
×
(
w1

w2

)
.

Thus, the set α is obtained from α by replacing the second strand by a comple-
mentary one at both sticky ends (if this second strand exists), and the second by
the first in the complete part of α. If α, β ∈ O(V ), statement (2) is immediate. We
show in detail how to prove (2) in case α ∈ W (V, ρ) and β ∈ O(V ), the remaining
cases can be dealt with similarly. So let α =

(
u1
u2

) [
v1
v2

]
ρ

(
w1
w2

)
and β =

(
x1
x2

)
.

First, let γ be an element of α ·ΔV
β. Then there are u′2, w

′
2, x

′
2 ∈ V ∗ such that(

u′
2

u2

)
,
(

w′
2

w2

)
,
(

x′
2

x2

)
∈ ρ∗ and γ =

(
u1
u′

2

) [
v1
v1

]
ΔV

(
w1
w′

2

)
·ΔV

(
x1
x′
2

)
. Because of the

special form of the complementarity relation ΔV , there are y1, z1, z′2 ∈ V ∗ such
that γ =

(
u1
u′

2

) [
v1y1
v1y1

]
ΔV

(
z1
z′
2

)
. Hence y1 is the prefix of w1x1 and of w′2x

′
2 of

length min(|w1x1|, |w′2x′2|), w1x1 = y1z1, and w′2x
′
2 = y1z

′
2. Let y2 be the pre-

fix of w2x2 of length |y1| = min(|w1x1|, |w2x2|) and define z2 ∈ V ∗ such that
y2z2 = w2x2. Note that

(
y1z′

2
y2z2

)
=

(
w′

2x′
2

w2x2

)
∈ ρ∗ and |y1| = |y2| imply

(
y1
y2

)
∈ ρ∗.

Thus, α ·ρ β =
(

u1
u2

) [
v1y1
v2y2

]
ρ

(
z1
z2

)
and γ ∈ α ·ρ β. Thus, we proved the inclusion

α ·ΔV
β ⊆ α ·ρ β.

Conversely, let γ ∈ α ·ρ β. Then there are y1, y2, z1, z2 ∈ V ∗ such that

γ ∈
(
u1

u2

)[
v1y1
v2y2

]
ρ

(
z1
z2

)
where yi is the prefix of wixi of length min(|w1x1|, |w2x2|), yizi = wixi, and(

y1
y2

)
∈ ρ∗. Hence we find u′2, z

′
2 ∈ V ∗ with

γ =
(
u1

u′2

)[
v1y1
v1y1

]
ΔV

(
z1
z′2

)
, and

(
u′2
u2

)
,

(
z′2
z2

)
∈ ρ∗.

We split y1z′2 into w′2x
′
2 with |w′2| = |w2|. Then

(
w′

2x′
2

w2x2

)
=

(
y1z′

2
y2z2

)
∈ ρ∗ and

|w′2| = |w2| imply
(

w′
2

w2

)
∈ ρ∗. Hence(

u1

u′2

)[
v1
v1

]
ΔV

(
w1

w′2

)
∈ α and

(
x1

x′2

)
∈ β .

Since γ is the product of these two molecules w.r.t. ΔV , we get γ ∈ α ·β. ��
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Theorem 6. Let S = (V, ρ,A,D) be a sticker system over the complementarity
relation (V, ρ). Then one can construct a sticker system S′ over (V,ΔV ) with
L(S) = L(S′).

In [4], several subclasses of sticker systems are considered (e.g., simple, one-
sided, right-sided, with bounded delay, . . .). We only remark that the above
theorem holds for any of these subclasses equally well since the proof carries
over immediately.

Proof. Let A′ = A =
⋃

β∈A β, D′ =
⋃

(α,γ)∈D(α × γ), and S′ = (V,ΔV , A
′, D′).

Since α is a finite subset of W (V,ΔV ) for any α ∈ W (V, ρ), the tuple S′ =
(V,ΔV , A

′, D′) is a sticker system over (V,ΔV ).
We show by induction that Ck(S′) = Ck(S) holds for any k ∈ N. For k = 0,

we have C0(S) = A = C0(S′) settling the base case. For the inductive argument,
suppose Ck(S′) = Ck(S). First, let δ′ ∈ Ck+1(S). Then there is δ ∈ Ck+1(S)
with δ′ ∈ δ. Hence we find β ∈ Ck(S) and (α, γ) ∈ D with δ = αβγ. But this
implies δ′ ∈ δ = αβγ = αβ γ. By the induction hypothesis, β ⊆ Ck(S′). The
construction of S′ yields α× γ ⊆ D′. Thus, we have δ′ ∈ αβ γ ⊆ Ck+1(S′).

Conversely, let δ′ ∈ Ck+1(S′). Then there are β′ ∈ Ck(S′) and (α′, γ′) ∈ D′

with δ′ = α′β′γ′. By the induction hypothesis, there is β ∈ Ck(S) with β′ ∈ β.
Furthermore, there is (α, γ) ∈ D satisfying (α′, γ′) ∈ α×γ. Note that δ′ ∈ αβ γ,
i.e., the product of these sets is non-empty. Hence αβγ ∈ Ck+1(S) is defined and
satisfies δ′ ∈ αβ γ = αβγ ⊆ Ck+1(S).

Now L(S) = L(S′) follows from Ck(S′) ∩ ρ∗ = Ck(S) ∩ Δ∗V since the first
strands of α and α are the same for any α ∈ W (V, ρ). ��

Based on Theorem 6, the second author describes in [7] the relation between
the families of the Chomsky hierarchy and the sticker hierarchy from [4] com-
pletely. In [7], the relation to multi-head automata is examined as well.

4 Any Non-trivial Complementarity Relation Suffices

In this section, we want to show that any non-trivial (in a sense to be made pre-
cise) complementarity relation gives rise to the full expressive power of Watson-
Crick automata and of sticker systems. Since the alphabet of a sticker system or
a Watson-Crick automaton can be arbitrarily large, we have to choose a mecha-
nism to encode the language over a large alphabet into a language over a small
alphabet. For this, we use inverse block codings.

Definition 7. Let V and W be two alphabets. A block coding is a homomor-
phism η : V ∗ → W ∗ such that all elements of η(V ) have the same length.

Note that a coding (i.e., a homomorphism with η(a) ∈ W for a ∈ V ) is a
special case of a block coding with all the images of letters having length one. If
a block coding is injective on V , it is injective on the whole of V ∗. Furthermore,
in this case, the image η(V ) ⊆ W is a block code.
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Definition 8. A complementarity relation (V, ρ) is non-trivial if there are let-
ters a, b, c, d ∈ V (not necessarily distinct) with (b, a), (d, c) ∈ ρ and (d, a) /∈ ρ.

Note that, e.g., the relation {(x, y), (y, z)} is non-trivial setting b = x, a =
d = y and c = z. On the other hand, the relation {(x, y)} is trivial although it is
neither complete nor empty. The book [4] restricts attention to symmetric com-
plementarity relations (and mentions the possibility to extend all results there
to the non-symmetric case). Suppose ρ is such a symmetric complementarity
relation satisfying

1. for any a ∈ V there is b ∈ V with (a, b) ∈ ρ, and
2. there are a, b ∈ V with (a, b) /∈ ρ.

Then ρ is clearly non-trivial: there are (d, a) /∈ ρ and, by the first requirement
and the symmetry of ρ, b and c with (b, a), (d, c) ∈ ρ. The first of these conditions
rules out useless letters: if there was no b ∈ V with (a, b) ∈ ρ, then the letter
a could not appear in any complete molecule. Hence we could forget about it
from the very beginning. Given this elimination of useless letters, the second
condition rules out the complete relation ρ = V 2 - we consider it of no interest
since it does not allow to transmit any information from the first to the second
strand (or vice versa) apart from the length.

Let (V, ρ) be a non-trivial complementarity relation with a, b, c, d ∈ V such
that (b, a), (d, c) ∈ ρ and (d, a) /∈ ρ. Furthermore, let V ′ = {1, 2, . . . , k−1} be an
alphabet. We define a homomorphism η : V ′∗ → V ∗ by η(n) = anck−nak−ncn.
Then η is clearly an injective block coding. We will also consider another block
coding θ, namely θ(n) = bndk−nbk−ndn.

Lemma 9. Let m,n ∈ V ′. Then m = n (i.e., (m,n) ∈ ΔV ′) iff the words η(m)
and θ(n) are complementary with respect to ρ, i.e., iff

(
η(m)
θ(n)

)
∈ ρ∗.

Proof. Note that (
η(m)
θ(n)

)
=

(
amck−mak−mcm

bndk−nbk−ndn

)
If m = n, then these two words are complementary since

(
a
b

)
,
(

c
d

)
∈ ρ. If,

conversely, these two words are complementary, then
(

amck−m

bndk−n

)
is a complete

molecule. Since
(

a
d

)
/∈ ρ, this implies m ≤ n. On the other hand, also

(
ak−mcm

bk−ndn

)
would be a complete molecule, implying k−m ≤ k− n and therefore m ≥ n by
the same reason. ��

Lemma 10. There is a mapping f : W (V ′, ΔV ′) → W (V, ρ) satisfying

– f
((

m
ε

))
=

(
η(m)

ε

)
for m ∈ V ′,

– f
((

ε
m

))
=

(
ε

θ(m)

)
for m ∈ V ′,

– f
([

m
m

]
ΔV ′

)
=

[
η(m)
θ(m)

]
ρ

for m ∈ V ′, and
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– f(α ·ΔV ′ β) = f(α) ·ρ′ f(β) for all α, β ∈ W (V ′, ρ′).3

Proof. The mapping f applies the coding η to the first and the coding θ to the
second strand. Now the requirements on f follow easily using Lemma 9 and the
fact that η and θ are block codings. ��

Now we formulate and prove the main theorem of this section.

Theorem 11. For any non-trivial complementarity relation (V, ρ) and any com-
plementarity relation (V ′, ρ′), there exists an injective block coding η : V ′∗ → V ∗

such that the following hold

1. If M ′ = (V ′, ρ′,K ′, s′0, T
′, F ′) is a Watson-Crick automaton over (V ′, ρ′),

then there exists a Watson-Crick automaton M = (V, ρ,K, s0, T, F ) over
(V, ρ) with L(M ′) = η−1(L(M)).

2. If γ′ = (V ′, ρ′, A′, D′) is a sticker system over (V ′, ρ′), then there exists a
sticker system γ = (V, ρ,A,D) over (V, ρ) with L(γ′) = η−1(L(γ)).

Proof. We give a sketch of the proof for Watson-Crick automata, only. The case
of sticker systems is dealt with similarly. The injective block coding is the map-
ping η defined in the construction preceeding Lemma 9 above. By Theorem 4,
we can assume ρ′ = ΔV ′ . Further, f is the mapping from Lemma 10. Then the
definition of M is simply

– K = K ′, s0 = s′0, and F = F ′,
– T = {(p, η(u), θ(v), q) | (p, u, v, q) ∈ T ′}.

Now it is easy to show that f(LM(M ′)) = LM(M) using Lemma 10. Since
η is injective, the statement of the theorem follows. ��

Looking at the subclasses of Watson-Crick automata defined above, one ob-
serves immediately that the property to be stateless, all-final, or simple transfers
from M ′ to M . So, e.g., SWK is contained in the set of block codings of lan-
guages in SWK(V, ρ) for any non-trivial complementarity relation (V, ρ). But
this transfer does not hold for the property to by 1-limited since we use block
codings instead of codings. The restrictions for sticker systems considered in [4]
do not mention the size of molecules, hence the theorem applies to these classes
equally well.

5 The Hierarchy of Watson-Crick Languages

Above, we defined families of Watson-Crick languages by properties of the ac-
cepting Watson-Crick automaton. The diagram on the left in Fig. 1 visualizes
those inclusions that have been shown in [4]. Some of these inclusions were shown
to be proper, including AWK⊂CS. Since we will prove AWK⊆FSWK, all the
classes above F1WK and below CS collapse, i.e., we will obtain the diagram on
the right of Fig. 1.

3 This means that the left hand side is defined if, and only if, the right hand side is
defined, in which case both sides are equal.
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Fig. 1. Inclusions between the Watson-Crick families

Theorem 12. Let M = (V, ρ,K, s0, T, F ) be a Watson-Crick automaton. Then
there exists an all-final and simple Watson-Crick automaton M ′ over (V, ρ) with
L(M) = L(M ′).

Proof. The idea of the construction is that the first head of M ′ will always rest
on odd positions while the second head’s moves ensure that it only visits even
positions (except the very first and very last configuration).

Let m ∈ N be such that (p,
(

u
v

)
, q) ∈ T implies |u| < m and |v| < m for all

states p, q ∈ K and all words u and v over V . Then let the state set of M ′ be
defined by

K ′ = {(p, u, v) | p ∈ K,u, v ∈ V ∗, |u|, |v| ≤ m}∪̇{ι′, f ′} .

Since we want to construct an all-final automaton, we are forced to set F ′ =
K ′. There are four groups of transitions in T ′ that we describe next

– initialisation
For a ∈ V , there is a transition (ι′,

(
a
ε

)
, (s0, a, ε)). Since the state ι′ will be

the initial state of M ′, this definition forces any run of M ′ to begin with one
step of the first head. After this step, the automaton memorizes the letter a
seen on the first string.

– look-ahead
If (p, ux, v) ∈ K ′ and |x| = 2, then ((p, u, v),

(
x
ε

)
, (p, ux, v)) is a transi-
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tion in T ′. Symmetrically, if (p, u, vy) ∈ K ′ and |y| = 2, then the tuple
((p, u, v),

(
ε
y

)
, (p, u, vy)) is a transition in T ′. This form of look-ahead en-

sures that the first head stays on odd and the second one on even positions.
– simulation

If (p,
(

x
y

)
, q) ∈ T and (p, xu, yv) ∈ K ′, then ((p, xu, yv),

(
ε
ε

)
, (q, u, v)) is a

transition in T ′.
– acceptance

If (p, u, v) ∈ K ′, a ∈ V , q ∈ F with (p,
(

ua
v

)
, q) ∈ T , then ((p, u, v),

(
a
ε

)
, f ′) ∈

T ′. Symmetrically, if (p, u, v) ∈ K ′, b ∈ V , q ∈ F with (p,
(

u
vb

)
, q) ∈ T , then

((p, u, v),
(

ε
b

)
, f ′) ∈ T ′.

Claim 1. Let x, y ∈ V ∗ and (p, u, v) ∈ K ′. Then the following two statements
are equivalent

1. There exists a run from ι′ to (p, u, v) in M ′ labeled
(

x
y

)
.

2. There are x′, y′ ∈ V ∗ such that x = x′u, y = y′v, |x| is odd, |y| is even, and
there is a run from s0 to p in M labeled

(
x′

y′

)
.

This claim can be shown easily by induction on the length of the respective
runs.

Claim 2. Let x, y ∈ V +. Then the following are equivalent

1. There exists a run of M ′ from ι′ to f ′ labeled
(

x
y

)
.

2. There is a run of the Watson-Crick automaton M from s0 to some q ∈ F

with label
(

x
y

)
, and |x| ≡ |y| mod 2.

Now L(M) = L(M ′) follows immediately: for x ∈ V +, we have x ∈ L(M) iff
there exists y ∈ V + such that

(
x
y

)
∈ ρ∗ and there exists a run in M from s0 to

some state q ∈ F labeled
(

x
y

)
. Since

(
x
y

)
∈ ρ∗ requires in particular that x and

y are of the same length, the second claim ensures that x ∈ L(M) holds iff there
is y ∈ V + with

(
x
y

)
∈ ρ∗ and there exists a run in M ′ from ι′ to f ′ labeled

(
x
y

)
.

But this is by definition the case iff x ∈ L(M ′). ��

6 A Note on ω-Watson-Crick Automata

In [5], Watson-Crick automata are provided with acceptance conditions that
allow to accept infinite molecules. In particular, Büchi-, Muller-, Street-, and
Rabin-conditions are considered and shown to be equivalent. It is not hard to
see that our Thms. 4 and 11 hold for Watson-Crick automata with any of these
acceptance conditions. Thus, also in the context of infinite molecules, one-to-
one complementarity relations (or non-trivial complementarity relations together
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with block codings) suffice. This is not clear as far as Theorem 12 is concerned.
In the finite case, we used the trick that only at the end of a computation,
the two heads rest on the same position. This trick is not available for infinite
computations since they do not have an end.

References
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Abstract. Closures of linear context-free languages under Boolean op-
erations are investigated. The intersection closure and the complemen-
tation closure are incomparable. By closing these closures under further
Boolean operations we obtain several new language families. The hier-
archy obtained by such closures of closures is proper up to level four,
where it collapses to the Boolean closure which, in turn, is incompa-
rable with several closures of the family of context-free languages. The
Boolean closure of the linear context-free languages is properly contained
in the Boolean closure of the context-free languages. A characterization
of a class of non-unary languages that cannot be expressed as a Boolean
formula over the linear context-free languages is presented.

1 Introduction

Undoubtedly, context-free languages are of great practical importance. They are
one of the most important and most developed area of formal language theory.
However, on one hand, in many situations appear non-context-free languages in
a natural way leading to the observation: “The world is not context-free”. A
comprehensive discussion of this observation giving “seven circumstances where
context-free grammars are not enough” can be found in [4]. So, there is consid-
erable interest in language families that extend the context-free languages, but
have similar properties. On the other hand, the known upper bound on the time
complexity of context-free language recognition still exceeds O(n2). So, there is
considerable interest in language families that admit efficient recognizers, but
decrease the descriptional capacity only slightly.

For example, linear context-free languages have efficient recognition algo-
rithms and are well known to be a proper subfamily of the context-free lan-
guages. The family of linear context-free languages (LIN) is closed under union,
and intersection with regular sets, but they are not closed under intersection and
complementation.

The Boolean closure of LIN offers a significant increase in descriptional ca-
pacity compared with the family LIN itself. In addition, it preserves the at-
tractively efficient recognition algorithm taking O(n2) time and O(n) space.
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The latter follows by the family of languages accepted by a certain massively
parallel automata model, the so-called deterministic real-time one-way cellular
automata. It is known that this family is recognized with O(n2) time and O(n)
space [8, 14], contains the linear context-free languages [13] and is closed under
Boolean operations [5, 14].

The significant increase can be seen, e.g., by the languages Lwcw = {wcw |
w ∈ {a, b}∗}, {anbncn | n ∈ N0} or {(abn)n | n ∈ N0} that are complements of
linear context-free languages, or the sets of valid computations of Turing ma-
chines that can be represented by the intersection of two linear languages [1].
From the latter language many undecidability results of the operator problem
for LIN follow [2]. E.g., it is not even semidecidable whether the intersection,
concatenation, or shuffle of two linear context-free languages, or the complemen-
tation, Kleene star, or power of a linear context-free language is linear context
free.

The main goal of this paper is to investigate the relationships between the
family LIN, their closures under sole Boolean operations, compositions of
closures, their Boolean closure and arbitrary context-free languages. The system-
atic investigation of the Boolean closures of arbitrary and deterministic context-
free languages started in [16, 17, 18]. In particular, in [16, 18] deterministic and
nondeterministic context-free languages and their Boolean closures are studied
motivated by the question “How much more powerful is nondeterminism than
determinism?” E.g., it is shown that there are context-free languages that can-
not be expressed as a Boolean formula over deterministic context-free languages.
Similarly, we may ask “How much more powerful is an unbounded number than
just one turn of a pushdown automaton?” motivating the study of the Boolean
closures of linear and arbitrary context-free languages.

In [17] machine characterizations for a wide class of Boolean closures of nonde-
terministic language families are shown. Basically, the characterizations are given
by machines for the underlying language families, where the acceptance condi-
tions are modified. In [10] a characterization of deterministic real-time one-way
cellular automata by so-called linear conjunctive grammars has been shown. Lin-
ear conjunctive grammars are basically linear context-free grammars augmented
with an explicit intersection operation, where the number of intersections is, in
some sense, not bounded as in a Boolean formula.

The paper is organized as follows. In the next section we present some basic
notions and definitions. Section 3 deals with the families of linear languages and
their complements as well as with their complementation closure. Section 4 is
devoted to the intersection closures of LIN, where a finite number of intersections
is distinguished from k ∈ N intersections. The results are transfered to the
union closures of the complements of linear languages. In Section 5 the Boolean
closure of LIN is compared with several other closures. E.g., it is shown that
there exists a context-free language not belonging to the Boolean closure of
LIN, and, moreover, both families are incomparable. Further, a class of non-
unary languages not belonging to the Boolean closure of LIN is characterized.
Finally, Section 6 leads us inside the Boolean closure by closing several closures.
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It is shown that there are no infinite hierarchies of closures of closures. Instead,
the hierarchies collapse at level four. The paper is concluded with a diagram
summarizing the inclusions shown.

2 Preliminaries

We denote the positive integers {1, 2, ...} by N and the set N ∪ {0} by N0. The
empty word is denoted by λ. For the length of w we write |w|. We use ⊆ for
inclusions and ⊂ if the inclusions are strict. Moreover, the reader is assumed
to be familiar with basic concepts of formal language theory, in particular with
the definition of (linear) context-free grammars as contained, e.g., in [12]. The
families of languages that are generated by context-free resp. linear context-free
grammars are called context-free (CFL) resp. linear (LIN) languages. In general,
a family of languages is a collection of languages containing at least one non-
empty language. Let L be a family of languages and op1, op2, . . . , opk, k ∈ N,
be a finite number of operations defined on L . Then Γop1,...,opk

(L ) denotes the
least family of languages which contains all members of L and is closed under
op1, . . . , opk. In particular, we consider the operations complementation (∼),
union (∪), and intersection (∩), which are called Boolean operations. Accordingly,
we write ΓBOOL for Γ∼,∪,∩. The intersection (union) with regular languages is
denoted by ∩R (∪R). It is well known that LIN is closed under intersection and
union with regular sets and under union, but is not closed under intersection
and complementation, e.g. [12].

3 Complementation Closure

For a family of languages L , the family of complements CO-L is defined to be
{L | L ∈ L }, where L denotes the complement of L. We start by exhibiting
briefly the closure properties of CO-LIN under Boolean operations. The next
lemma is a simple application of DeMorgan’s law but it generalizes the situation.

Lemma 1. Let L be a family of languages not closed under complementation.
Then (1) CO-L is not closed under complementation, (2) L is closed under
union (intersection) with regular languages if and only if CO-L is closed under
intersection (union) with regular languages, and (3) L is closed under union
(intersection) if and only if CO-L is closed under intersection (union).

By applying Lemma 1, the closure properties of CO-LIN are easily derived
from the properties of LIN.

Corollary 2. The family CO-LIN is not closed under complementation, closed
under union and intersection with regular languages, closed under intersection,
and not closed under union.

It follows that LIN and CO-LIN are incomparable. This observation can be
strengthened considering the relations with CFL and CO-CFL. To this end, we
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utilize the language Lwcw = {wcw | w ∈ {a, b}∗} which plays an important
role in the sequel. From [7, 12] we derive that its complement Lwcw is a linear
context-free language. On the other hand, in [18] it has been shown that Lwcw

cannot be expressed by any intersection of finitely many context-free languages.

Lemma 3. The families LIN and CO-CFL resp. CFL and CO-LIN are incom-
parable, respectively.

Proof. The language Lwcw is linear context free, but not a member of CO-CFL.
Conversely, Lwcw is a member of CO-LIN, but not a member of CFL. ��

Now we turn to the complementation closure of LIN, and observe immediately
Γ∼(LIN) = Γ∼(CO-LIN) = LIN∪CO-LIN, and the properness of the inclusions
LIN ⊂ Γ∼(LIN) and CO-LIN ⊂ Γ∼(LIN).

In order to disprove the closure of Γ∼(LIN) under union, we show the follow-
ing lemma, which generalizes a remark in [18].

Lemma 4. Let L be a family of languages not closed under complementation.
If L and CO-L are closed under intersection with regular languages, then
Γ∼(L ) is (1) not closed under union, (2) not closed under intersection, (3)
closed under intersection with regular languages, and (4) closed under union
with regular languages.

Proof. (1) Let L1 ⊆ A∗1 be some language from L \CO-L . For an alphabet A2
disjoint from A1, let L2 ⊆ A∗2 be some language from CO-L \L . Assume Γ∼(L )
is closed under union. Then we have L1 ∪ L2 ∈ Γ∼(L ). Consider two cases: (i)
L1 ∪ L2 ∈ L implies (L1 ∪ L2) ∩ A∗2 = L2 ∈ L . (ii) L1 ∪ L2 ∈ CO-L implies
(L1 ∪ L2) ∩ A∗1 = L1 ∈ CO-L . For both cases a contradiction follows.
(2) Since Γ∼(L ) is trivially closed under complementation, but not closed under
union, it cannot be closed under intersection. (3) Since L and CO-L are both
closed under intersection with regular languages, their union is closed, too. (4)
Applying Lemma 1 (2) to L and CO-L proves the assertion. ��

An application of Lemma 4 shows the next theorem.

Theorem 5. The complementation closure Γ∼(LIN) is not closed under union,
not closed under intersection, closed under intersection with regular languages,
and closed under union with regular languages.

From different closure properties we conclude the properness of the inclusion
Γ∼(LIN) ⊂ ΓBOOL(LIN).

4 Intersection Closure

Besides the general closure of some family L under intersection (Γ∩(L )) or
union (Γ∪(L )), there is a natural interest in closures under a limited number of
intersections or unions. Let k ∈ N be some positive integer. Then
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Γ∩k
(L ) = {L1 ∩ L2 ∩ · · · ∩ Lk | Li ∈ L , 1 ≤ i ≤ k} and

Γ∪k
(L ) = {L1 ∪ L2 ∪ · · · ∪ Lk | Li ∈ L , 1 ≤ i ≤ k}

are the k-intersection and k-union closures of L , respectively.
Clearly, we have Γ∩(L ) =

⋃
k∈N

Γ∩k
(L ) and Γ∪(L ) =

⋃
k∈N

Γ∪k
(L ).

In [9] an infinite hierarchy of intersections of context-free languages has been
shown. For any k ≥ 2, Γ∩k−1(CFL) ⊂ Γ∩k

(CFL) is proved by showing that the
witness language Lk ⊆ {a1, . . . , ak}∗ separates both closures, where

Lk = {ai1
1 ai2

2 · · · aik

k ai1
1 ai2

2 · · · aik

k | ij ∈ N, 1 ≤ j ≤ k}.

On one hand, since Lk /∈ Γ∩k−1(CFL), it does not belong to Γ∩k−1(LIN). On
the other hand, in [9] it is observed that Lk =

⋂
1≤i≤k Lk,i, where

Lk,i = {a∗1 · · · a∗i−1a
n
i a∗i+1 · · · a∗ka∗1 · · · a∗i−1a

n
i a∗i+1 · · · a∗k | n ∈ N}.

Since Lk,i ∈ LIN, we conclude Lk ∈ Γ∩k
(LIN). So, actually in [9] a stronger

result has been shown, an infinite hierarchy of intersections of linear context-free
languages.

Next we derive closure properties of Γ∩k
(LIN) under operations in question.

Theorem 6. Let k ∈ N be some positive integer. Then Γ∩k
(LIN) is (1) closed

under intersection and union with regular languages, (2) not closed under inter-
section, and (3) not closed under complementation.

Proof. (1) Let L = L1 ∩ L2 ∩ · · · ∩ Lk be an arbitrary language from Γ∩k
(LIN),

where Li are linear languages. For an arbitrary regular language R, the inter-
section L ∩ R = L1 ∩ R ∩ L2 ∩ · · · ∩ Lk is represented by L1,R ∩ L2 ∩ · · · ∩ Lk,
where L1,R = L1 ∩R belongs to LIN, since LIN is closed under intersection with
regular languages.

The union L∪R = (L1 ∩L2 ∩ · · · ∩Lk)∪R is represented by (L1 ∪R)∩ · · · ∩
(Lk ∪ R). Since each (Li ∪ R) is linear, the assertion follows.

(2) The non-closure under intersection is seen by the intersection of Lk+1,k+1
and

⋂
1≤i≤k Lk+1,i.

(3) For the non-closure under complementation we observe that for all k ∈ N
the language Lk is linear. So, Lk+1 /∈ Γ∩k

(LIN) and Lk+1 ∈ Γ∩k
(LIN). ��

We continue with the investigation of the closure properties of the intersection
closure Γ∩(LIN). The properties are similar to the properties of Γ∩k

(LIN) except
for the trivial closure under intersection.

Theorem 7. The intersection closure Γ∩(LIN) is (1) closed under intersection,
(2) closed under union, and (3) not closed under complementation.

Proof. (2) In order to show the closure under union let L = L1 ∩ L2 ∩ · · · ∩
Lm, m ≥ 1, and L′ = L′1 ∩ L′2 ∩ · · · ∩ L′n, n ≥ 1, be two languages from
Γ∩(LIN), where Li and L′j are linear languages. Their union can be written
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as L ∪ L′ =
⋂

1≤i≤m Li ∪
⋂

1≤j≤n L′j . By distributive law, this is equivalent to
L ∪ L′ =

⋂
1≤i≤m,1≤j≤n Li ∪ L′j . Since LIN is closed under union, we obtain

L ∪ L′ =
⋂

1≤i≤mn L′′i , where the languages L′′i are linear. Therefore, L ∪ L′ ∈
Γ∩(LIN).

(3) A witness language for the non-closure under complementation is Lwcw.
��

Theorem 8. The intersection closure Γ∩(LIN) and the complementation clo-
sure Γ∼(LIN) are incomparable.

Proof. The language Lwcw is a candidate for Γ∼(LIN) \ Γ∩(LIN). It does not
belong to Γ∩(LIN). Since Lwcw ∈ LIN, it follows Lwcw ∈ CO-LIN and, hence,
Lwcw ∈ Γ∼(LIN). Now consider the language L0 = {cndncn | n ∈ N} whose
complement L0 is linear. Further set L1 = {anbnam | m, n ∈ N} and L2 =
{ambnan | m, n ∈ N}. The languages L1 and L2 are linear. Therefore, L =
L0 ∪ (L1 ∩ L2) belongs to Γ∩(LIN).

Assume L ∈ Γ∼(LIN). Then consider two cases: (i) L ∈ LIN implies L ∩
{a∗b∗a∗} = L1∩L2 is linear. (ii) L ∈ CO-LIN implies L∩{c∗d∗c∗} = L0 belongs
to CO-LIN. For both cases we obtained a contradiction, thus, L /∈ Γ∼(LIN). ��

So far we have investigated the closures for the Boolean operations under
which LIN is not closed. Focusing on CO-LIN we now turn to its union closure.
First we observe that the intersection hierarchy nicely induces a union hierar-
chy by complementation. In fact, we have CO-(Γ∩k

(LIN)) = Γ∪k
(CO-LIN) and

CO-(Γ∩(LIN)) = Γ∪(CO-LIN) by DeMorgan’s law. An immediate consequence
is the union hierarchy. For any k ≥ 2: Lk ∈ Γ∪k

(CO-LIN) \ Γ∪k−1(CO-LIN). By
Lemma 1 and Theorem 6 resp. Theorem 7 the following properties follow.

Theorem 9. Let k ∈ N be some positive integer. Then Γ∪k
(CO-LIN) is (1)

closed under intersection and union with regular languages, (2) not closed under
union, and (3) not closed under complementation.

Theorem 10. The union closure Γ∪(CO-LIN) is (1) closed under intersection,
(2) closed under union, and (3) not closed under complementation.

Again we obtained different families as the next theorem shows.

Theorem 11. The union closure Γ∪(CO-LIN) and the complementation closure
Γ∼(LIN) are incomparable.

Proof. By Theorem 8 there exists a language L ∈ Γ∼(LIN) \ Γ∩(LIN). The
complement L belongs still to Γ∼(LIN), but does not belong to Γ∪(CO-LIN).

Similarly, for L′ ∈ Γ∩(LIN) \ Γ∼(LIN) we have that L′ does not belong to
Γ∼(LIN), but does belong to Γ∪(CO-LIN). ��

By means of different closure properties the properness of the inclusions
Γ∪(CO-LIN) ⊂ ΓBOOL(LIN) and Γ∩(LIN) ⊂ ΓBOOL(LIN) follows.



290 M. Kutrib, A. Malcher, and D. Wotschke

LIN CO-LIN Γ∼(LIN) Γ∩k (LIN) Γ∪k (CO-LIN) Γ∩(LIN) Γ∪(CO-LIN)
∪ + – – ? – + +
∩ – + – – ? + +
∼ – – + – – – –

Fig. 1. Summary of closure properties I

5 Boolean Closure

In this section we are going to examine the position of the Boolean closure of
LIN in the hierarchy of languages. On one end, the deterministic context-sensitive
languages (DCSL) are closed under Boolean operations. Therefore, the Boolean
closure ΓBOOL(LIN) is contained in DCSL. Moreover, since every unary context-
free language is regular, every unary language in ΓBOOL(LIN) is regular, too. So,
the inclusion ΓBOOL(LIN) ⊂ DCSL is proper. On the other end, we compare the
Boolean closure of LIN with related closures of the context-free languages and
with the family of languages accepted by a certain massively parallel automata
model, the so-called deterministic real-time one-way cellular automata. Let us
denote these languages by Lrt(OCA). It is known that Lrt(OCA) contains the
linear context-free languages [13] and is closed under Boolean operations [5, 14].
So, it contains ΓBOOL(LIN). Results in [15] show that Lrt(OCA) is not closed
under concatenation. A point of particular importance for our concern is that the
witness language is the concatenation of a linear language. It is shown that the
2-linear language Lab = LL does not belong to Lrt(OCA), where L = {anbn |
n ∈ N} ∪ {anbxabn | x ∈ {a, b}∗, n ∈ N}.

Corollary 12. There are context-free languages not belonging to ΓBOOL(LIN).

Whenever we compare two closures of the form Γop(LIN) and Γop(CFL),
where op ⊆ {∼,∪,∩}, we observe the trivial inclusion Γop(LIN) ⊆ Γop(CFL).
The situation for CO-LIN and CO-CFL is similar. In fact, by Corollary 12 the
inclusion is proper.

Corollary 13. The inclusions Γ∼(LIN) ⊂ Γ∼(CFL), Γ∩(LIN) ⊂ Γ∩(CFL),
Γ∪(CO-LIN) ⊂ Γ∪(CO-CFL), and ΓBOOL(LIN) ⊂ ΓBOOL(CFL) are proper, re-
spectively.

On the other hand, we obtain incomparability whenever we relate a CFL-
family to a LIN-family.

Lemma 14. The Boolean closure ΓBOOL(LIN) is incomparable with each of
the families (1) CFL, (2) CO-CFL, (3) Γ∩(CFL), (4) Γ∪(CO-CFL), and (5)
Γ∼(CFL).

Proof. (1) Lab ∈ CFL \ΓBOOL(LIN) and L = {anbncn | n ∈ N} ∈ ΓBOOL(LIN) \
CFL, since L ∈ CO-LIN \ CFL.
(2) Lab ∈ CO-CFL \ ΓBOOL(LIN) and L ∈ ΓBOOL(LIN) \ CO-CFL.
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(3) Lab ∈ Γ∩(CFL) \ ΓBOOL(LIN) and Lwcw ∈ ΓBOOL(LIN) \ Γ∩(CFL).
(4) Lab ∈ Γ∪(CO-CFL) \ ΓBOOL(LIN) and Lwcw ∈ ΓBOOL(LIN) \ Γ∪(CO-CFL).
(5) Lab ∈ Γ∼(CFL) \ ΓBOOL(LIN). In [18] it has been shown that the language
L = d1Lwcw ∪d2{wcx | w, x ∈ {a, b}∗, w �= x} is not a member of Γ∼(CFL). But
it is easy to show that L ∈ ΓBOOL(LIN). ��

Similarly we obtain:

Lemma 15. The closures (1) Γ∩(LIN), (2) Γ∪(CO-LIN), or (3) Γ∼(LIN), and
CFL or CO-CFL are incomparable, respectively.

Proof. For all cases, Lab belongs to CFL, Lab does not belong to CO-CFL, but
neither Lab nor Lab does belong to one of the closures of LIN.

Conversely, L = {anbncn | n ∈ N} as well as L do belong to Γ∩(LIN),
Γ∼(LIN), or Γ∪(CO-LIN). But L is not a member of CFL and L is not a member
of CO-CFL. ��

The inclusion ΓBOOL(LIN) ⊆ Lrt(OCA) arises the questions how Lrt(OCA)
relates to ΓBOOL(CFL), and whether the inclusion ΓBOOL(LIN) ⊆ Lrt(OCA) is
proper. Both questions will be answered by showing that there are non-unary
languages not belonging to ΓBOOL(CFL) but belonging to Lrt(OCA). We con-
tinue with some preparing remarks and a proposition.

Consider for some fixed positive integer n vectors in Nn. A set of the form
{v0 + x1v1 + · · · + xkvk | xi ≥ 0, 1 ≤ i ≤ k}, where v0, . . . , vk ∈ Nn, is said
to be linear. A semilinear set is a finite union of linear sets. It is known that
the family of semilinear subsets of Nn is closed under union, intersection, and
complementation [6]. For an alphabet A = {a1, . . . , an} the Parikh mapping
Ψ : A∗ → Nn is defined by Ψ(w) = (|w|a1 , . . . , |w|an

), where |w|ai
denotes the

number of occurrences of ai in the word w.
In [11] a fundamental result concerning the distribution of symbols in the

words of a context-free language has been shown. It says that for any context-
free language L, the Parikh image Ψ(L) = {Ψ(w) | w ∈ L} is semilinear. Un-
fortunately, this is not true for languages in CO-CFL or CO-LIN. For example,
L = {(abn)n | n ∈ N} ∈ CO-LIN and, clearly, Ψ(L) is not semilinear. Nev-
ertheless, for languages L of a specific form we have the following relation be-
tween the complement of the language and the complement of its Parikh image
Ψ(L) = Nn \ Ψ(L).

Proposition 16. Let B = {ax1
1 · · · axn

n | xi ∈ N0, 1 ≤ i ≤ n} and L ⊆ B. Then
Ψ(L) = Ψ(L ∩ B).

Proof. The complement of L is represented by

L = {ax1
1 · · · axn

n | ax1
1 · · · axn

n /∈ L} ∪ {ax1
1 · · · axn

n | xi ∈ N0, 1 ≤ i ≤ n}.

Therefore, L ∩ B = {ax1
1 · · · axn

n | ax1
1 · · · axn

n /∈ L} and

Ψ(L ∩ B) = {(x1, . . . , xn) | ax1
1 · · · axn

n /∈ L}.

On the other hand, Ψ(L) = {(x1, . . . , xn) | ax1
1 · · · axn

n ∈ L} implies

Ψ(L) = Nn \ Ψ(L) = {(x1, . . . , xn) | ax1
1 · · · axn

n /∈ L}. ��
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Now we are prepared to prove that a certain class of languages does not
belong to ΓBOOL(CFL).

Theorem 17. Let B = {ax1
1 · · · axn

n | xi ∈ N0, 1 ≤ i ≤ n} and L ⊆ B. If
L ∈ ΓBOOL(CFL) then Ψ(L) is semilinear.

Proof. Let L ∈ ΓBOOL(CFL). Then, for some k, l1, . . . , lk ∈ N0, language L has
a representation

⋃
1≤i≤k

⋂
1≤j≤li

Li,j such that Li,j ∈ CFL or Li,j ∈ CO-CFL.
Consider the languages Li = Li,1 ∩ · · · ∩ Li,li . Without loss of generality, we

may assume Li,1, . . . , Li,li ⊆ B, and Li,1 ∈ CO-CFL and Li,2, . . . , Li,li ∈ CFL.
So, Ψ(Li,j), 2 ≤ j ≤ li, is a semilinear set. For Li,1 we distinguish two cases.
(1) If Li,1 ∈ CFL, then Ψ(Li,1) is a semilinear set.
(2) If Li,1 ∈ CO-CFL \ CFL, then Li,1 ∈ CFL. Since B is a regular lan-
guage, Li,1 ∩ B belongs to CFL, either. Therefore, Ψ(Li,1 ∩ B) is semilinear.
By Proposition 16 it follows that Ψ(Li,1) is semilinear. Since the family of
semilinear subsets of Nn is closed under Boolean operations, Ψ(Li,1) is semi-
linear. So, due to the closure under intersection and the fact Li,j ⊆ B we obtain
Ψ(Li) = Ψ(Li,1) ∩ · · · ∩ Ψ(Li,li) is semilinear. Finally, due to the closure under
union, Ψ(L) = Ψ(L1) ∪ · · · ∪ Ψ(Lk) is a semilinear set. ��

For example, Lp = {anb2n | n ∈ N0} does not belong to ΓBOOL(CFL). In [3]
it has been shown that Lp is a member of Lrt(OCA). This proves the next
theorem.

Theorem 18. The inclusion ΓBOOL(LIN) ⊂ Lrt(OCA) is proper.

Theorem 19. The family Lrt(OCA) and the Boolean closure ΓBOOL(CFL) are
incomparable.

6 Inside the Boolean Closure

This section is devoted to shed some light on those families inside the Boolean
closure of LIN that are obtained by closing some closure under another Boolean
operation.

Theorem 20. The closure Γ∼(Γ∩(LIN)) = Γ∼(Γ∪(CO-LIN)) is properly con-
tained in ΓBOOL(LIN).

Proof. We may apply Lemma 4. It follows that Γ∼(Γ∩(LIN)) is not closed under
union and intersection. ��

Corollary 21. The closures Γ∩(LIN), Γ∪(CO-LIN), and Γ∼(LIN) are properly
contained in Γ∼(Γ∩(LIN)), respectively.

Proof. The assertion for Γ∩(LIN) and Γ∪(CO-LIN) follows from different closure
properties. By Theorem 8 there exists a language L ∈ Γ∩(LIN) \ Γ∼(LIN). ��
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Next we close Γ∼(LIN) = Γ∼(CO-LIN) under union and intersection and
show that the resulting families Γ∩(Γ∼(LIN)) and Γ∪(Γ∼(LIN)) are different.

Theorem 22. The closures Γ∩(Γ∼(LIN)) and Γ∪(Γ∼(LIN)) are different and
properly contained in ΓBOOL(LIN).

Proof. We show that the closures are different. To this end, we will use the
marked concatenation with A∗, where A is some alphabet. LIN is closed under
this operation since it is closed under concatenation with regular languages. For
L ∈ CO-LIN, L ∈ B∗, we observe LcA∗ ∈ CO-LIN if and only if LcA∗ ∈ LIN.
LcA∗ can be represented by L1 ∪ LcA∗, where L1 is the regular language of
words not of the appropriate form, i.e., L1 = B∗cA∗. So CO-LIN is closed under
this operation, either.

Consider the language Ld = LwcwdL′wcw ⊆ {a, b, c}∗d{a′, b′, c′}∗. The lan-
guage Ld has the representation Lwcwd{a′, b′, c′}∗ ∩ {a, b, c}∗dL′wcw. So, Ld is
the intersection of a linear language and a language from CO-LIN. We conclude
L ∈ Γ∩(Γ∼(LIN)).

Now assume Ld ∈ Γ∪(Γ∼(LIN)). Then Ld can be written as L1 ∪ L2, where
L1 ∈ LIN and L2 ∈ Γ∪(CO-LIN). Applying the homomorphism h(a′) = h(b′) =
h(c′) = h(d) = λ, h(a) = a, h(b) = b, and h(c) = c to L1, we cannot obtain
Lwcw, since LIN is closed under homomorphisms. Let w0cw0 be a fixed word not
belonging to h(L1). Then the intersection w0cw0d{a′, b′, c′}∗∩L2 = w0cw0dLwcw

must belong to Γ∪(CO-LIN). Since CO-LIN is closed under left quotient with a
singleton, the union closure Γ∪(CO-LIN) is closed under this operation, either.
Therefore, Lwcw must belong to Γ∪(CO-LIN). Hence, the complement Lwcw

would be a member of Γ∩(LIN), a contradiction. ��

Corollary 23. The closures Γ∩(Γ∼(LIN)) or Γ∪(Γ∼(LIN)) are not closed under
complementation, and are closed under intersection and union with regular lan-
guages. The union closure is not closed under intersection, and the intersection
closure is not closed under union.

The next two theorems are immediate consequences.

Theorem 24. The closures Γ∩(LIN) and Γ∼(LIN) are properly contained in the
closure Γ∩(Γ∼(LIN)).

Theorem 25. The closures Γ∪(CO-LIN) and Γ∼(LIN) are properly contained
in the closure Γ∪(Γ∼(LIN)).

Continuing the process of composing closures, for Γ∩(Γ∪(Γ∼(LIN))) and
Γ∪(Γ∩(Γ∼(LIN))) we reach ΓBOOL(LIN). Let us consider Γ∼(Γ∩(Γ∼(LIN))) =
Γ∼(Γ∪(Γ∼(LIN))).

Theorem 26. Γ∼(Γ∩(Γ∼(LIN))) is properly contained in ΓBOOL(LIN).

Proof. By Lemma 4, Γ∼(Γ∩(Γ∼(LIN))) is not closed under union and intersec-
tion, but is closed under union and intersection with regular languages. ��
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Corollary 27. The closures Γ∪(Γ∼(LIN)) and Γ∩(Γ∼(LIN)) are properly con-
tained in the closure Γ∼(Γ∩(Γ∼(LIN))).

Theorem 28. Γ∼(Γ∩(LIN)) is properly contained in Γ∼(Γ∩(Γ∼(LIN))).

Proof. Consider Lwcw ⊆ {a, b, c}∗ and let L′wcw ⊆ {a′, b′, c′}∗ be the homomor-
phic image h(Lwcw), where h(a) = a′, h(b) = b′, and h(c) = c′. Since Lwcw does
not belong to Γ∩(LIN), the complement L′wcw does not belong to Γ∪(CO-LIN).
Therefore, the union L′wcw ∪ Lwcw cannot belong to Γ∩(LIN) or Γ∪(CO-LIN).
Thus, it cannot belong to Γ∼(Γ∩(LIN)).
On the other hand, it belongs to Γ∪(LIN∪CO-LIN) = Γ∪(Γ∼(LIN)). Therefore,
it belongs to Γ∼(Γ∪(Γ∼(LIN))) = Γ∼(Γ∩(Γ∼(LIN))). ��

Finally, the question whether we obtain an infinite hierarchy is answered
negatively. On the next level the closures collapse to ΓBOOL(LIN).

Theorem 29. Γ∩(Γ∼(Γ∩(Γ∼(LIN)))) or Γ∪(Γ∼(Γ∩(Γ∼(CO-LIN)))) are equal
to ΓBOOL(LIN).

Γ∼(Γ∩(LIN)) Γ∪(Γ∼(LIN)) Γ∩(Γ∼(LIN)) Γ∼(Γ∩(Γ∼(LIN)))
∪ – + – –
∩ – – + –
∼ + – – +

Fig. 2. Summary of closure properties II

DCSL

ΓBOOL(CFL) Lrt(OCA)

ΓBOOL(LIN)

Γ∪(Γ∼(Γ∪(CO-LIN)))Γ∼(Γ∩(Γ∼(LIN)))Γ∩(Γ∼(Γ∩(LIN)))

Γ∪(Γ∼(CO-LIN))Γ∼(Γ∩(LIN))Γ∩(Γ∼(LIN))

Γ∪(CO-LIN)Γ∼(LIN)Γ∩(LIN)

Γ∪k
(CO-LIN)Γ∩k

(LIN)

Γ∪1(CO-LIN)Γ∩1(LIN)

LIN CO-LIN

Fig. 3. Solid lines are proper inclusions, dashed lines are inclusions
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Abstract. There already exist classifications of those groups which have
regular, context-free or recursively enumerable word problem. The only
remaining step in the Chomsky hierarchy is to consider those groups
with a context-sensitive word problem. In this paper we consider this
problem and prove some results about these groups. We also establish
some results about other context-sensitive decision problems in groups.

1 Word Problems in Groups

There are several intriguing connections between group theory and formal lan-
guage theory. For example, we can consider groups G whose word problem lies
in a particular class F of languages: if Σ is a finite set and ϕ is a surjective
(monoid) homomorphism from Σ∗ onto G, then we define the word problem WP
of G to be 1ϕ−1 that is the set of words in Σ∗ which represent (via ϕ) the
identity in G. It would appear that whether or not the WP lies in F depends
on the choice of Σ and ϕ, but it is well known that this is not the case if F is
closed under inverse homomorphism (see [10] for example).

In the situation we have just described, we say that Σ is a monoid generating
set for G. If Σ is a disjoint union X ∪X−1, where X−1 = {x−1 | x ∈ X} is in a
(1-1) correspondence with X and x−1ϕ = (xϕ)−1, then we say that X is a group
generating set for G. We consider group generating sets; we simply refer to such
a set X as a generating set and write G = 〈X〉. For brevity, we sometimes refer
to a word in Σ∗ as being a word over X. We will only be concerned with finitely
generated groups G, i.e. groups G where there is a finite set X with G = 〈X〉.

We may define a presentation of a group G to be an expression of the form
〈X | R〉, where X is a generating set for G and R is a set of relations which define
the structure of G. Each relation is of the form ui = vi for words ui, vi over X,
where the notation u = v means that u and v represent the same element of the
group; if two words w and w′ represent the same element of G, then this fact
will be a consequence of the relations in R (and the normal group laws). G is
said to be finitely presented if X and R can be chosen to be finite; a free group
is one with a presentation in which R is empty.

It is a natural question as to which groups have word problems in a particular
class F of languages. For the class of regular languages, Anisimov [1] showed that

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 296–307, 2004.
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a group has a regular WP if and only if it is finite. Muller and Schupp [21] proved
that a group G has context-free WP if and only if G has a free subgroup of finite
index. In fact, they had an extra condition on their group, namely that the group
was “accessible”, but Dunwoody [7] removed the need for this hypothesis by
showing that all finitely-presented groups are accessible (it was already known [2]
that groups with a context-free WP are finitely presented). As far as the class of
recursively enumerable languages is concerned, the Higman embedding theorem
[11] gives us that a finitely generated group G has a recursively enumerable WP
if and only if G is a subgroup of a finitely presented group. There is also a
characterization of groups with a recursive WP in [5].

Given all this, we have classifications for groups with WP in three of the
classes of languages in the Chomsky hierarchy. The only remaining case is that
of the class CS of context-sensitive languages (i.e. those languages which can be
recognized in non-deterministic linear space). The problem of giving a precise
classification of groups with WP in CS seems to be very difficult and we present
some partial results here. We will also consider the class DCS of deterministic
context-sensitive languages, namely those which can be decided in deterministic
linear space. It is still an open question as to whether DCS and CS coincide,
although it is known [12, 26] that CS is closed under complementation.

2 Other Decision Problems in Groups

We also consider other decision problems in groups. For example, in a group G,
two elements g1 and g2 are said to be conjugate if there exists h ∈ G with
h−1g1h = g2, in which case we write g1 ∼G g2. The conjugacy problem CP is the
question as to whether two given words represent conjugate elements of G.

Another natural problem to consider is the generalised word problem GWP of
a group G with generators X with respect to a subgroup H, i.e. the question if we
can determine whether a word overX lies inH. We will also consider the effective
generalized word problem EGWP, where not only do we wish to see if a word w
lies in the subgroup H, but (if so) also determine which particular element of
the subgroup w represents and produce a representative (in the generators of H)
for w. For a survey of decision problems in groups, see [19, 20].

As with the other classes of languages mentioned here, CS and DCS are closed
under inverse homomorphism, and so the WP being (deterministic) context-
sensitive is independent of the choice of generating set. We can similarly deduce
the same results for the CP and GWP with respect to any subgroup; we will see
that the ability to choose a particular generating set can be very convenient.

3 Examples

What sort of groups have a context-sensitive decision problem? Let us give some
examples. We begin with free groups. A word w in a free group F can be reduced
by systematically removing all subwords of the form xx−1 or x−1x in w. Two
reduced words are equivalent in F if and only if they are identical as words; it
immediately follows that the WP for F lies in DCS.
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We now turn to the CP. A word w in F is said to be cyclically reduced if it is
reduced and the first symbol of w is not the inverse of the last symbol. If w is not
cyclically reduced, we can conjugate by the last symbol to remove both the first
and last symbols; note that, if u ∼F v, then any conjugate of u is also conjugate
to any conjugate of v (this is all standard knowledge). Hence the CP reduces
to solving the problem for cyclically reduced words. If u and v are cyclically
reduced, then they are conjugate if and only if u is a cyclic permutation of v.
We can clearly check this in linear space simply by comparing all possible cyclic
permutations of u with v; so the CP for a free group lies in DCS.

The GWP in a free group is also deterministic context-sensitive. The classical
method of solving this is via Nielsen reductions; see [16, 17] for example. Once
we have a Nielsen reduced set for the subgroup, it is relatively easy to test
membership; from [4], we see that all of this can be done in linear space.

The case of free groups is a special case of that of linear groups (those groups
isomorphic to matrix groups). It was proved by Lipton and Zalcstein [15] that
all linear groups have WP solvable in deterministic logspace, and thus clearly
solvable in linear space; so all linear groups have WP in DCS. However, the CP
and GWP for such groups may be unsolvable (see Proposition 2 below).

Another important example is the class of automatic groups; see [8] for
example. This is a wide class which has attracted a great deal of interest. Shapiro
showed [27] that any finitely generated subgroup of an automatic group has
deterministic context-sensitive WP. (The converse is false; see [14].) The ques-
tion of the complexity of the CP for automatic groups is still open; it is not even
known if such groups have solvable CP. The GWP is unsolvable for automatic
groups (see Proposition 3 below).

Given a class of groups with WP in CS or DCS, we can sometimes generate
further examples by taking finitely generated subgroups given the following result
(see [14, 23] for example):

Proposition 1. Let F be a class of languages closed under inverse homomor-
phisms and intersection with regular sets; then the class of groups whose WP lies
in F is closed under taking finitely generated subgroups.

One can easily extend Proposition 1 to cover the GWP as well. Since both
CS and DCS satisfy the hypothesis of Proposition 1, we have that the classes
of groups whose WP or GWP lies in CS or DCS are all closed under taking
finitely generated subgroups. Unfortunately, this result does not carry over to
the situation with regard to the CP. In fact, there are groups with solvable CP
(i.e. the CP lies in the class of recursive languages, which is closed under inverse
homomorphism and intersection with regular languages) which have subgroups
with unsolvable CP (see [6] for example).

4 Direct Products

In this section we investigate whether our decision problems being (deterministic)
context-sensitive is preserved under taking direct products. We first conclude
that this is the case for the WP:
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Theorem 1. Let G and H be groups and suppose G and H both have (deter-
ministic) context-sensitive WP; then the direct product K = G × H also has
(deterministic) context-sensitive WP.

Proof. Let X and Y be generating sets for G and H respectively and consider
the generating set Z = X ∪ Y for K. A word u over Z is equivalent in K to a
word uguh where ug is a word over X and uh a word over Y , and uguh can be
obtained simply by rearranging the symbols in u. Now u represents the identity
if and only if ug and uh both represent the identity. We simply create uguh

and then test ug and uh for equivalence to the identity using the (deterministic)
context-sensitive algorithms for G and H; this all operates in linear space. �

Let us now turn to the conjugacy problem.

Theorem 2. Let G and H be groups, and suppose that G and H both have
(deterministic) context-sensitive CP; then the direct product K = G × H also
has (deterministic) context-sensitive CP.

Proof. Continuing with the notation of Theorem 1, suppose u and v are the
input words; then u and v are equivalent in K to words uguh and vgvh as before.
Now u ∼K v if and only if ug ∼G vg and uh ∼H vh. Our algorithm is very similar
to the WP algorithm: we create the words ug, uh, vg, vh and apply the relevant
algorithms for solving the CP in G and H to (ug, vg) and (uh, vh). �

We note that the property of having GWP in CS or DCS is not preserved
under taking direct products. For example, let F be a free group on two gener-
ators. We saw in Section 3 that F has GWP in DCS, but, as in Proposition 3
below, the GWP for F × F is unsolvable.

5 Relationship Between the Decision Problems

It is natural to ask how these decision problems interact with each other (both
in general and in the context-sensitive case). We start with an elementary ob-
servation. The WP (is w equivalent to 1?) is a special case of the CP (is w
conjugate to 1?) and the GWP (is w an element of 〈1〉?); so a group with CP
or GWP solvable within some resource bound also has its WP solvable within
that bound.

It is possible for all three of these decision problems to be deterministic
context-sensitive (as in the case of free groups). It is also possible for none of the
problems to be decidable via context-sensitive algorithms as there are groups
with unsolvable WP; however, the WP may be genuinely easier than both the
CP and the GWP as the following result shows:

Proposition 2. There exists a linear group with deterministic context-sensitive
WP and unsolvable GWP and CP.

Proof. From Theorem 5.2 of [20], the CP and GWP are unsolvable for some
finitely generated subgroups of the matrix group SL(4,Z); however, as we saw
above, linear groups have deterministic context-sensitive WP. �
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We also have the following:

Proposition 3. There exists an automatic group G with deterministic context-
sensitive WP and CP and unsolvable GWP.

Proof. Let F be a free group on two generators, and form the group G = F ×F ;
then G is automatic [8]. From [18], G has a finitely generated subgroup L such
that the GWP for L in G is unsolvable. However F has deterministic context-
sensitive WP and CP, and thus so does G from Theorems 1 and 2. �

As far as the remaining possibility, namely the existence of a group with
deterministic context-sensitive GWP (and hence WP), but unsolvable CP, is
concerned, it appears to be still open whether there even exists a group with
solvable GWP but unsolvable CP. If such a group does exist, it is natural to ask
whether there is a group with deterministic context-sensitive GWP but unsolv-
able CP.

6 Amalgamated Free Products of Groups

We have considered direct products of groups; we now consider what happens if
we try to combine two groups with a (deterministic) context-sensitive decision
problem via an amalgamated free product. Let us first explain what this means.

Suppose we have groups G and H with subgroups K = 〈k1, . . . , kr〉 and
L = 〈l1, . . . , lr〉 respectively, and also that there is an isomorphism ϕ : K → L
where ϕ : ki 
→ li for each i. The amalgamated free product G ∗K,L H is the
quotient of the free product G ∗ H obtained by equating ki to li for each i. It
is a standard result that G and H both embed naturally into G ∗K,L H and we
can then consider K as a common subgroup of G and H (and write G ∗K H).

Let X = 〈k1, . . . , kr, g1, . . . , gs〉 and Y = 〈k1, . . . , kr, h1, . . . , ht〉 be generating
sets for the factors G and H respectively, where the gi and hj do not lie in K
(of course, words over either of these sets of elements may lie in K), and then
let Z be the generating set X ∪ Y for G. We define a word u over Z to be in
reduced form if u = uKu1u2 . . . un, where uK is a (possibly empty) word over
{k1, . . . , kr}, ui /∈ K for all i � 1, and ui and ui+1 do not lie in the same factor
for all i � 1. The presence of the subword uK here allows us to consider words
in K without changing our definition (simply by having n = 0). However, if
n � 1, then we can incorporate uK into u1 and simply consider u = u1u2 . . . un,
which is perhaps more natural. It is known (see [17] for example) that such a
word with n � 1 does not represent the identity. We define a word u over Z to be
cyclically reduced if it is in a reduced form and if u1 and un are not in the same
factor (except in the case where n = 1). Every word is equivalent to a reduced
word and, if uKu1u2 . . . um and vKv1v2 . . . vn are reduced words equivalent to
the same word u, then we must have m = n.

We have the following important result (see [17] for example):

Theorem 3 (Solitar’s Theorem). Every element of G∗KH is conjugate to a
cyclically reduced element of G∗KH. In addition, suppose that u is a cyclically
reduced element of G∗KH; then:
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1. if u is conjugate to an element of K, then u lies in some factor;
2. if u is conjugate to an element v in some factor but u is not in a conjugate

of K, then u and v lie in the same factor and are conjugate therein;
3. if u is conjugate to a cyclically reduced element v = v1 . . . vm with m � 2 and

vi in a different factor to vi+1 for all i, then u can be obtained by cyclically
permuting v1 . . . vm and conjugating by an element of K.
Let G, H and K be as above. We cannot come up with such a wide-ranging

statement for the amalgamated free product as we did for the direct product.
The problem is that we need to be able to determine whether or not a word
actually represents an element of K, i.e. determine the EGWP for G and H
with respect to K. For example, suppose we had a word u = uguh where ug is
a word in the gi and uh is a word in the hi. We may have a situation where
neither ug nor uh represents the identity, but ug is equivalent to some element
k ∈ K and uh is equivalent to k−1, and hence u is equivalent to the identity; the
situation is therefore more complicated than that in direct products. However,
we can produce at least a partial result; first we need to be able to reduce words:

Proposition 4. Suppose G and H are groups with a common subgroup K and
there exist (deterministic) context-sensitive procedures to decide the EGWP for
K in G and H; then, for any word u in G ∗K H, there exists a (deterministic)
context-sensitive procedure to produce a reduced word equivalent to u.

Proof. This result is fairly obvious since the context-sensitive languages are those
decidable in linear space. To summarise the strategy, let

G = 〈k1, . . . , kr, g1, . . . , gs〉 and H = 〈k1, . . . , kr, h1, . . . , ht〉

as usual, where the ki generate K, and consider the generating set

{k1, . . . , kr, g1, . . . , gs, h1, . . . , ht}

for G ∗K H.
We go through our word u and consider each (maximal) subword v which is

a string of symbols in one of the groups G or H (i.e. a combination of gi and
ki, or a combination of hi and ki). We use our algorithm for the EGWP in the
appropriate group to see if v lies in K; if so, then we produce a word v in the ki

representing v and replace the subword v of u by v. We systematically continue
our algorithm on the new word.

We continue in this fashion until we either terminate with the empty word
(which is obviously the reduced form corresponding to the identity) or a non-
empty word in K, or a situation where we cannot make any more deletions or
substitutions. This leaves us with a word in reduced form.

This procedure has produced a reduced form for u; note that the word is not
always decreasing in length since, when we replace a subword by a representative
in K, this may increase the length of the subword by a linear factor C (the
procedures for the EGWP are context-sensitive). However, these replacements
are bounded by a linear factor and so we have a context-sensitive procedure.

Note that, if G and H have deterministic context-sensitive EGWP with re-
spect to K, then this algorithm is entirely deterministic. �
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We have the following result as a simple consequence:

Theorem 4. Let G, H and K be groups as above. Suppose G and H both have
(deterministic) context-sensitive WP and there exist (deterministic) context-
sensitive algorithms to decide the EGWP for G and H with respect to K; then
G ∗K H also has (deterministic) context-sensitive WP.

Proof. We produce the reduced form u′ of our input word u via the linearly
bounded algorithm of Proposition 4. Now u cannot represent the identity unless
u′ lies in one of the factors; if it does, then we check to see if it is indeed
equivalent to the identity in the appropriate group using the (deterministic)
context-sensitive algorithm for the WP of that group. �

As an immediate corollary to Theorem 4 we have the following:

Corollary 1. Let G and H be groups and suppose that G and H have (determin-
istic) context-sensitive WP; then the free product G ∗H also has (deterministic)
context-sensitive WP.

Proof. This result follows immediately from Theorem 4 by taking K = {1}; our
(deterministic) context-sensitive algorithm for determining if a word u lies in K
is simply to run the appropriate WP solver on u. �

In general, it is a difficult question to ask which groups with (deterministic)
context-sensitive WP also have (deterministic) context-sensitive EGWP with re-
spect to the appropriate amalgamated subgroup; however, we have the following:

Proposition 5. Let G be a group with (deterministic) context-sensitive WP and
suppose that K is a finite subgroup of G; then G has (deterministic) context-
sensitive EGWP with respect to K.

Proof. Let G = 〈X〉 and let k1, . . . , kn be words overX representing the elements
of K. Suppose we are given a word u over X; we systematically test the words
u−1ki in the WP solver for G. If we accept a word u−1kp, then u lies in K with
representative kp; if none of the words u−1ki are accepted by the WP solver then
u cannot equal any of the ki, and hence u does not lie in K.

Since the enumeration of the elements of K merely gives us finitely many
fixed representatives, this algorithm operates in linear space. If the WP for G is
deterministic context-sensitive then this procedure is also deterministic. �

Given Theorem 4 and Proposition 5, we can immediately deduce the following:

Corollary 2. Suppose G and H are groups with a common finite subgroup K.
If G and H have (deterministic) context-sensitive WP, then G ∗K H also has
(deterministic) context-sensitive WP.

Let us now move on to the conjugacy problem. Unfortunately the situation
here is somewhat more restrictive, in that it is possible to have two groups
with (deterministic) context-sensitive CP and (deterministic) context-sensitive



Context-Sensitive Decision Problems in Groups 303

EGWP with respect to an amalgamated subgroup, and yet the amalgamated
free product with respect to this subgroup does not have (deterministic) context-
sensitive CP. An example of this occurs in the second half of the proof of the main
theorem of [6]. The general situation appears to be very complicated; however,
we do have the following result:

Theorem 5. Let G, H and K be groups as before. Suppose that G and H both
have (deterministic) context-sensitive CP and the amalgamated subgroup K is
finite; then G ∗K H also has (deterministic) context-sensitive CP.

Proof. Suppose u and v are our input words. We cyclically reduce u and v, first
by putting them in reduced form (as in Proposition 4) and then conjugating
if necessary (replacing u or v by a conjugate does not affect the property of
conjugacy between them). So we can assume that u and v are cyclically reduced
and appeal to Theorem 3.

Suppose u is empty; then, if v is empty, we accept u and v as conjugate and,
if v is non-empty, we reject them. The situation is similar if v is empty.

If u is conjugate to an element from the subgroup K, then, by Theorem 3,
u lies in some factor. So, for u and v to be conjugate, v must lie in some factor
(but not necessarily the same factor as u). But we must have u ∼ k1 in the
factor containing u, k1 ∼ k2 in the factor containing v, and so on, where each ki

is an element of K. Since K is finite, we can check this using a pre-determined
lookup table to list the conjugate pairs in K.

Alternatively, suppose u lies in one of the factors but is not conjugate to an
element of K; then, by Theorem 3, v must also lie in the same factor. So we
check to see if this is true, and, if not, we reject u and v. If it is true, then we
use the (deterministic) context-sensitive algorithm for the CP in the appropriate
group to determine whether or not they are conjugate, and accept and reject
accordingly. We have an entirely similar procedure if v lies in one of the factors.

In the only remaining case, we must have u = x1 . . . xn and v = y1 . . . ym

where n,m � 2. By Theorem 3 we must have m = n; so, if this is not the case,
then we reject the words. If m = n then we know, by Theorem 3, that u and v are
conjugate if and only if we can obtain a word equivalent to u by first of all taking
some cyclic permutation of the yi, and then conjugating by an element of K.
Enumerating the finite number of elements of K, we consider each permutation
of the yi, and each possible conjugation by an element of K, and see if we obtain
a word equivalent to u. Clearly there are only a finite number of words to check.

This algorithm is clearly context-sensitive and, as usual, if our routines are
deterministic, then the whole procedure is entirely deterministic. �

As an immediate consequence of Theorem 5 we have the following:

Corollary 3. Let G and H be groups, and suppose G and H have (determin-
istic) context-sensitive CP; then the free product G ∗H also has (deterministic)
context-sensitive CP.

These ideas allow us to show that other classes of groups have a context-
sensitive WP. As an example, we consider a class of one-relator groups as follows:
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Proposition 6. Any one-relator group G which has a presentation of the form
〈a1, . . . , am, b1, . . . , bn | ua = ub〉, where ua is a word over the ai and ub is a
word over the bi, has deterministic context-sensitive WP.

Proof. Suppose we are given a group G satisfying our hypothesis. Let FA and FB

be the free groups on the ai and bi respectively. Note that G is the amalgamated
free product of FA and FB with respect to the cyclic subgroups C1 = 〈ua〉 and
C2 = 〈ub〉. As FA and FB are free groups, the EGWP of FA with respect to C1
and FB with respect to C2 are deterministic context-sensitive. The result follows
from Theorem 4. �

One important class of groups satisfying the above condition, is the class
of surface groups. These groups occur when we consider connections between
surfaces and combinatorial group theory; for further information see [28] for
example. An important point is that there is a basic classification of all closed
finite surfaces, either as an orientable surface (of some genus n), a non-orientable
surface (of some genus n) or a sphere. The surface groups are the fundamental
groups of these surfaces and have the following presentations:

orientable, genus n : 〈x1, y1, . . . , xn, yn | x1y1x
−1
1 y−1

1 . . . xnynx
−1
n y−1

n = 1〉;
non-orientable, genus n : 〈x1, . . . , xn | x2

1 . . . x
2
n = 1〉;

sphere : {1}.

Theorem 6. All surface groups have deterministic context-sensitive WP.

Proof. Any surface group is either isomorphic to the fundamental group of a
sphere (in which case the group is trivial and the WP is obviously solvable) or
else is a one-relator group satisying the hypothesis of Proposition 6. �

7 Reduced and Irreducible Word Problems

The reduced and irreducible word problems were introduced by Haring-Smith
in [9]. Suppose G = 〈X〉 and let W = WX(G) denote the WP of G with respect
to X. The reduced word problem RWP is the set RX(G) of non-empty words w in
W such that no non-empty proper prefix of w lies in W . Similarly the irreducible
word problem IWP is the set IX(G) of non-empty words w in W such that no
proper non-empty subword of w lies in W . We have the following result [24, 25]:

Proposition 7. Let G = 〈X〉; then:

1. WX(G) = RX(G)∗.
2. WX(G) = I(IX(G)) where I(L) represents the insertion closure of L.

For an account of insertion closures, see [13]. We now have the following:

Proposition 8. Let G = 〈X〉; then the following are equivalent:

1. G has (deterministic) context-sensitive WP with respect to X.
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2. G has (deterministic) context-sensitive RWP with respect to X.
3. G has (deterministic) context-sensitive IWP with respect to X.

Proof. This is fairly straightforward given the characterization in Proposition 7.
We give the details as an example of the sort of approach often taken to solve
problems in linear space.

Suppose that G has (deterministic) context-sensitive WP and let u be a word
over X. Let us consider the RWP. First we test whether u represents the identity
using the (deterministic) context-sensitive algorithm for the WP for G. If it does
not, then u does not lie in the RWP and we reject it. If it does, then we test
all proper non-empty prefixes of u. If any of them represent the identity, then
we reject u; otherwise, if we have tested all such prefixes without finding one
representing the identity, then we accept u. The algorithm for the IWP is entirely
similar, but, instead of testing prefixes, we now test every non-empty subword.
These two algorithms are clearly (deterministic) context-sensitive procedures,
and so we have shown that 1 ⇒ 2 and 1 ⇒ 3.

Conversely, suppose thatG has (deterministic) context-sensitive RWP and we
are given a word u over X. From Proposition 7 we have that WX(G) = RX(G)∗.
So, if u represents the identity, then some non-empty prefix of u (including
possibly u itself) must lie in RX(G). We simply test each prefix, in turn, with
our (deterministic) context-sensitive algorithm for the RWP to see if it lies in
RX(G). If we find no such prefix in RX(G), then we reject u. If we find a prefix in
RX(G), then we delete this prefix and start our algorithm again on the resulting
shorter word. We must eventually terminate, either with rejection or by reducing
u to the empty word, in which case we accept u.

The algorithm for the WP, when we have a (deterministic) context-sensitive
IWP is similar. Given an input u we simply search through all non-empty sub-
words of u and delete a subword if we find one in IX(G); we then continue our
algorithm on the resulting shorter word. If we cannot find such a subword then
u cannot lie in the insertion closure of IX(G) and we must reject it; we accept
u if we eventually terminate with the empty word. Again these algorithms are
clearly (deterministic) context-sensitive and this proves that 2 ⇒ 1 and 3 ⇒ 1,
showing the equivalence of the three conditions. �

In the above, we were careful to specify a particular generating set, since we
needed this to be able to use the results of Proposition 7. However, Proposi-
tion 8 allows us to deduce that the property of having a (deterministic) context-
sensitive RWP or IWP is independent of the choice of generating set:

Corollary 4. Suppose G = 〈X〉 = 〈Y 〉; then:

1. if G has (deterministic) context-sensitive RWP with respect to X, then G
also has (deterministic) context-sensitive RWP with respect to Y .

2. if G has (deterministic) context-sensitive IWP with respect to X, then G
also has (deterministic) context-sensitive IWP with respect to Y .

Proof. Suppose G has (deterministic) context-sensitive RWP with respect to X.
Then G has (deterministic) context-sensitive WP with respect to X by Propo-
sition 8, and thus G has (deterministic) context-sensitive WP with respect to Y
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(see Proposition 1 and the comments following it). Hence, using Proposition 8
again, G has (deterministic) context-sensitive RWP with respect to Y .

The situation with regard to the IWP is entirely similar. �

Hence we are able to talk about the RWP or IWP being (deterministic)
context-sensitive without worrying about which generating set is being consid-
ered. Note, however, that the proof of Corollary 4 uses Proposition 8, which
requires linear space, and Corollary 4 does not generalize to arbitrary families
of languages closed under inverse homomorphism.

8 Conclusion

In this paper we have studied groups with context-sensitive decision problems. It
is clear that there is still a great deal more to do if we are to classify such groups;
we are dealing with a wide class of groups with many interesting properties. We
hope that our results provide a first step on this road to classification.

One point to consider involves the issue of determinism and non-determinism.
It is still unknown whether or not linear space is equivalent to non-deterministic
linear space in general. One interesting question is motivated by the result of
Muller and Schupp in [22] that, if a group has context-free WP, it also has
deterministic context-free WP, even though the classes of context-free and de-
terministic context-free languages are distinct. (In fact, by [3] the WP of such a
group is even an NTS language.) One might ask whether a similar result holds
for context-sensitive languages, that is, does every group with a context-sensitive
WP also have a deterministic context-sensitive WP?

We should also mention that we have focused on context-sensitive languages
as the one remaining case in the Chomsky hierarchy (as far as word problems
are concerned). In fact, our results could be couched in terms of (deterministic)
algorithms that can be performed in space O(f(n)) for any complexity function
f(n) such that O(n) ⊆ O(f(n)).
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help and encouragement.
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Abstract. We prove several complexity and decidability results for au-
tomatic monoids: (i) there exists an automatic monoid with a P-complete
word problem, (ii) there exists an automatic monoid such that the first-
order theory of the corresponding Cayley-graph is not elementary decid-
able, and (iii) there exists an automatic monoid such that reachability
in the corresponding Cayley-graph is undecidable. Moreover, we show
that for every hyperbolic group the word problem belongs to LOGCFL,
which improves a result of Cai [4].

1 Introduction

Automatic groups attracted a lot of attention in combinatorial group theory
during the last 15 years, see e.g. the textbook [11]. Roughly speaking, a finitely
generated group G, generated by the finite set Γ , is automatic, if the elements
of G can be represented by words from a regular language over Γ , and the
multiplication with a generator on the right can be recognized by a synchronized
2-tape automaton. This concept easily yields a quadratic time algorithm for the
word problem of an automatic group.

It is straight forward to extend the definition of an automatic group to the
monoid case; this leads to the class of automatic monoids, see e.g. [6, 13, 16, 26]. In
the present paper, we study the complexity and decidability of basic algorithmic
questions in automatic monoids. In Section 4 we consider the complexity of the
word problem for automatic monoids. Analogously to the group case, it is easy
to show that for every automatic monoid the word problem can be solved in
quadratic time. Here, we prove that there exists a fixed automatic monoid with
a P-complete word problem. Thus, unless P = NC, where NC is the class of all
problems that can be solved in polylogarithmic time using a polynomial amount
of hardware, there exist automatic monoids for which the word problem cannot
be efficiently parallelized. Whether there exists an automatic group with a P-
complete word problem was asked for the first time by Cai [4]. This problem
remains open.
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An important subclass of the class of automatic groups is the class of hyper-
bolic groups, which are defined via a geometric hyperbolicity condition on the
Cayley-graph. In [4], Cai has shown that for every hyperbolic group the word
problem belongs to the parallel complexity class NC2. Cai also asked, whether
the upper bound of NC2 can be improved. Using known results from formal lan-
guage theory, we show in Section 4 that the word problem for every hyperbolic
group belongs to the complexity class LOGCFL ⊆ NC2. LOGCFL is the class of
all problems that are logspace reducible to a context-free language [32]. We also
present a class of automatic monoids, namely monoids that can be presented by
finite, terminating, confluent, and left-basic semi-Thue systems [29], for which
the complexity of the word problem captures the class LOGDCFL (the logspace
closure of the deterministic context-free languages).

In Section 5 we study Cayley-graphs of automatic monoids. The Cayley-graph
of a finitely generated monoid M wrt. a finite generating set Γ is a Γ -labeled
directed graph with node set M and an a-labeled edge from a node x to a node y
if y = xa in M. Cayley-graphs of groups are a fundamental tool in combinatorial
group theory [23] and serve as a link to other fields like topology, graph theory,
and automata theory, see, e.g., [24, 25]. Results on the geometric structure of
Cayley-graphs of automatic monoids can be found in [30, 31]. Here we consider
Cayley-graphs from a logical point of view, see [20, 21] for previous results in
this direction. More precisely, we consider the first-order theory of the Cayley-
graph of an automatic monoid M. This theory contains all true statements of
the Cayley-graph that result from atomic statements of the form “there is an
a-labeled edge between two nodes” using Boolean connectives and quantification
over nodes. From the definition of an automatic monoid it follows immediately
that the Cayley-graph of an automatic monoid is an automatic graph in the sense
of [1, 18]; hence, by a result from [18], its first-order theory is decidable. This
allows to verify non-trivial properties for automatic monoids, like for instance
right-cancellativity. Here, we prove that there exists an automatic monoid such
that the first-order theory of the corresponding Cayley-graph is not elementary
decidable. This result sharpens a corresponding statement for general automatic
graphs [1]. We remark that, using a result from [22], the Cayley-graph of a right-
cancellative automatic monoid has an elementarily decidable first-order theory.
Finally we prove that there exists an automatic monoid M such that reachability
in the Cayley-graph (i.e., the question whether for given monoid elements u and
v there exists x ∈ M with u = vx in M) is undecidable.

2 Monoids and Word Problems

More details and references concerning the material in this section can be found
in [3]. In the following, let Γ be always a finite alphabet of symbols. A semi-Thue
system R over Γ is a (not necessarily finite) set R ⊆ Γ ∗ × Γ ∗; its elements are
called rules. A rule (s, t) will be also written as s → t. W.l.o.g. we may assume
that every symbol from Γ appears in a rule of R; thus, Γ is given uniquely by R.
Let dom(R) = { | ∃r : (, r) ∈ R} and ran(R) = {r | ∃ : (, r) ∈ R}. We define
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the binary relation →R on Γ ∗ by: x →R y if ∃u, v ∈ Γ ∗ ∃(s, t) ∈ R : x = usv and
y = utv. Let ∗↔R by the smallest equivalence relation on Γ ∗ containing →R; it
is a congruence wrt. the concatenation of words and called the Thue-congruence
associated with R. Hence, we can define the quotient monoid Γ ∗/ ∗↔R, which is
briefly denoted by Γ ∗/R. Let πR : Γ ∗ → Γ ∗/R be the canonical surjective monoid
homomorphism that maps a word w ∈ Γ ∗ to its equivalence class wrt. ∗↔R. A
monoid M is finitely generated if it is isomorphic to a monoid of the form Γ ∗/R.
In this case, we also say that M is finitely generated by Γ . If in addition to
Γ also R is finite, then M is a finitely presented monoid. The word problem of
M / Γ ∗/R wrt. R is the set {(u, v) ∈ Γ ∗×Γ ∗ | πR(u) = πR(v)}; it is undecidable
in general. If a monoid M is isomorphic to both Γ ∗/R and Σ∗/S for semi-Thue
systems R and S, then the word problem of M wrt. R is logspace-reducible
to the word problem of M wrt. S. Hence, since we are only interested in the
decidability (resp. complexity) status of word problems, it makes sense to speak
just of the word problem of M.

The semi-Thue system R is terminating if there does not exist an infinite
chain s1 →R s2 →R s3 →R · · · in Γ ∗. The set of irreducible words wrt. R is
IRR(R) = {s ∈ Γ ∗ | ¬∃t ∈ Γ ∗ : s →R t}. The system R is confluent (resp. locally
confluent) if for all s, t, u ∈ Γ ∗ with s

∗→R t and s
∗→R u (resp. s →R t and

s →R u) there exists w ∈ Γ ∗ with t
∗→R w and u

∗→R w. If R is terminating,
then by Newman’s lemma R is confluent if and only if R is locally confluent.
Using critical pairs [3] which result from overlapping left-hand sides of R, local
confluence is decidable for finite terminating semi-Thue systems. The system R
is length-reducing if |s| > |t| for all (s, t) ∈ R, where |w| is the length of a word
w. The system R is called length-lexicographic if there exists a linear order 0 on
the alphabet Γ such that for every rule (s, t) ∈ R either |s| > |t| or (|s| = |t|
and there are u, v, w ∈ Γ ∗ and a, b ∈ Γ such that s = uav, t = ubw, and a 0 b).
Clearly, every length-lexicographic semi-Thue system is terminating. In the case
when R is terminating and confluent, then every word s has a unique normal
form NFR(s) ∈ IRR(R) such that s

∗→R NFR(s) and moreover, the function
πR	IRR(R) (i.e., πR restricted to IRR(R)) is bijective. Thus, if moreover R is
finite, then the word problem of Γ ∗/R is decidable: πR(s) = πR(t) if and only if
NFR(s) = NFR(t).

3 Automatic Monoids

Automatic monoids were investigated for instance in [6, 13, 14, 16, 26]. They gen-
eralize automatic groups, see [11]. Let us fix a finite alphabet Γ . Let # �∈ Γ be
an additional padding symbol and let Γ# = Γ ∪ {#}. We define two encodings
ν�, νr : Γ ∗×Γ ∗ → (Γ#×Γ#)∗ as follows: Let u, v ∈ Γ ∗ and let k = max{|u|, |v|}.
Define w = u#k−|u|, x = v#k−|v|, y = #k−|u|u, and z = #k−|v|v. Let w[i] denote
the i-th symbol of w and similarly for x, y, and z. Then

νr(u, v) = (w[1], x[1]) · · · (w[k], x[k]) and ν�(u, v) = (y[1], z[1]) · · · (y[k], z[k]).
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For instance, νr(aba, bbabb) = (a, b)(b, b)(a, a)(#, b)(#, b) and ν�(aba, bbabb) =
(#, b)(#, b)(a, a)(b, b)(a, b). In the following let α, β ∈ {, r}.

A relation R ⊆ Γ ∗ × Γ ∗ is called α-automatic if the language {να(u, v) |
(u, v) ∈ R} is a regular language over the alphabet Γ# × Γ#. The following
simple lemma will turn out to be useful. Its simple proof is left to the reader. A
relation R ⊆ Γ ∗ × Γ ∗ has bounded length-difference if there exists a constant γ
such that for all (u, v) ∈ R, |(|u| − |v|)| ≤ γ.

Lemma 1. Let R,S ⊆ Γ ∗ × Γ ∗ have bounded length-difference. Then R is -
automatic if and only if R is r-automatic. Moreover, if R and S are α-automatic,
then R · S = {(st, uv) | (s, u) ∈ R, (t, v) ∈ S} is α-automatic as well.

Let M be a monoid. A triple (Γ, R, L) is an αβ-automatic presentation for M
if: (i) R is a semi-Thue system over the finite alphabet Γ such that M / Γ ∗/R,
(ii) L ⊆ Γ ∗ is a regular language such that πR	L maps L surjectively to M,
(iii) the relation {(u, v) ∈ L × L | πR(u) = πR(v)} is α-automatic, and (iv)
if β =  (resp. β = r), then the relation {(u, v) ∈ L × L | πR(au) = πR(v)}
(resp. {(u, v) ∈ L × L | πR(ua) = πR(v)}) is α-automatic for every a ∈ Γ .
The monoid M is αβ-automatic if there exists an αβ-automatic presentation
for M. Thus, we have four different basic notions of automaticity. Whereas
for groups all these four variants are equivalent [13] (which allows to speak of
automatic groups), one obtains 15 different notions of automaticity for monoids
by combining the four basic variants of αβ-automaticity [13, 14]. For our lower
bounds we will mostly work with the strongest possible notion of automaticity,
i.e., simultaneous αβ-automaticity for all α, β ∈ {, r} (which includes the notion
of biautomaticity from the theory of automatic groups, see [11]). Note that a
αβ-automatic monoid is by definition finitely generated. Various classes of semi-
Thue systems that present automatic monoids can be found in [26].

4 Complexity of the Word Problem

The word problem for an automatic group can be solved in quadratic time [11].
Moreover, the same algorithm also works for αβ-automatic monoids [6]. Here we
will show that P is also a lower bound for the monoid case.

Theorem 1. There is a finite, length-lexicographic, and confluent semi-Thue
system R ⊆ Γ ∗ × Γ ∗ such that the word problem for Γ ∗/R is P-complete and
(Γ, R, IRR(R)) is an αβ-automatic presentation for Γ ∗/R for all α, β ∈ {, r}.

Proof. We start with a fixed deterministic Turing machine S that accepts a
P-complete language. Let p(n) be a polynomial such that S terminates on an
input w ∈ L(S) after exactly p(|w|) steps (this exact time bound can be easily
enforced). We may assume that the tape is restricted to size p(|w|). It is straight
forward to simulate S by a new deterministic Turing machine T that operates
in a sequence of complete left/right sweeps over the whole tape (of size p(|w|)).
During a right sweep, the head runs from the left tape end to the right tape end
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in a sequence of right moves. When reaching the right tape end, the head turns
back and starts a left sweep. Let Σ be the tape alphabet of T , Q be the set of
states, q0 be the initial state, and qf be the final state. With |c ∈ Σ we denote the
blank symbol. We write qa ⇒T bp (aq ⇒T pb), in case T writes b, moves right
(left), and enters state p, when reading a in state q. The machine T terminates
(and accepts its input) if and only if it finally reaches the final state qf . Thus, T
cannot make any transitions out of qf . Moreover, we may assume that the tape
is blank and that the tape head is scanning the first cell when T terminates in
state qf . Define Γ = Σ ∪Σ ∪Q∪Q∪{$, $}, where Σ = {a | a ∈ Σ} is a disjoint
copy of Σ and similarly for Q. Let R be the following semi-Thue system over Γ :

qa → bp if qa ⇒T bp a q → pb if aq ⇒T pb

q$ → q for all q ∈ Q $q → q for all q ∈ Q

R is length-lexicographic and confluent (because T is deterministic). Next, let
w ∈ Σ∗ be an arbitrary input for T and let m = p(|w|). Then w is accepted by T

if and only if $
m

q0w |cm−|w|$m ∗→R qf |cm if and only if $
m

q0w |cm−|w|$m ∗↔R qf |cm.
Thus, the word problem for Γ ∗/R is P-hard.

Next, we show that for all α, β ∈ {, r}, (Γ, R, IRR(R)) is an αβ-automatic
presentation for Γ ∗/R (then in particular, the word problem for Γ ∗/R belongs
to P). Due to the symmetry of R, we can restrict to β = . Thus, we have
to show that the relation Ec = {(u, v) ∈ IRR(R) × IRR(R) | cu

∗→R v} is α-
automatic for all c ∈ Γ and α ∈ {, r}. Note that all relations that appear in the
following consideration have bounded length-difference. This allows to make use
of Lemma 1. First, note that the following relations are α-automatic:

Aq = {(u, vp) | p ∈ Q, u ∈ Σ∗, v ∈ Σ
∗
, qu

∗→R vp}
Bq = {(u, pv) | p ∈ Q,u ∈ Σ

∗
, v ∈ Σ∗, u q

∗→R pv}

The relation Aq (resp. Bq) describes a single right (resp. left) sweep over
the whole tape started in state q, which is just a rational transduction. Since
α-automatic relations are closed under composition, the relation

Cq = {(u$, pv) | p ∈ Q, u, v ∈ Σ∗, qu$ ∗→R pv}

is α-automatic as well. Now the α-automaticity of the relations Ec for c ∈ Γ
follows easily: For c ∈ Q ∪ Σ ∪ {$} we have Ec = {(u, cu) | u ∈ IRR(R)}, which
is clearly α-automatic. For c = a ∈ Σ and c = q ∈ Q, respectively, we have:

Ea = {(u, au) | u ∈ IRR(R), u �∈ QΓ ∗} ∪
{(qu, pbu) | u ∈ IRR(R), q, p ∈ Q, b ∈ Σ, (a q, pb) ∈ R}

Eq = {(uw, vw) | (u, v) ∈ Aq, w ∈ IRR(R), w �∈ (Σ ∪ {$})Γ ∗} ∪
{(uw, vw) | (u, v) ∈ Cq, w ∈ IRR(R)}.

Finally, E$ = {(u, $u) | u ∈ IRR(R), u �∈ QΓ ∗} ∪
⋃

q∈Q{(qu, v) | (u, v) ∈ Eq}.
This concludes the proof of the α-automaticity of the relations Ec. ��
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Corollary 1. There exists a fixed finitely presented monoid with a P-complete
word problem, which is simultaneously αβ-automatic for all α, β ∈ {, r}.

It is open, whether there exists an automatic group (or even cancellative au-
tomatic monoid) with a P-complete word problem. An important subclass of the
class of automatic groups is the class of hyperbolic groups, which are defined via
a geometric hyperbolicity condition on the Cayley-graph. The precise definition
is not important for the purpose of this paper. In [4], Cai has shown that for ev-
ery hyperbolic group the word problem belongs to the parallel complexity class
NC2, which is the class of all problems that can be recognized by a polynomial
size family of Boolean circuits of depth O(log2(n)), where only Boolean gates of
fan-in at most 2 are allowed. Cai also asked, whether the upper bound of NC2

can be improved. Using known results from formal language theory, we will show
that for every hyperbolic group the word problem belongs to LOGCFL ⊆ NC2,
which is the class of all problems that are logspace reducible to a context-free
language [32]. For alternative characterizations of LOGCFL see [27, 33].

Theorem 2. The word problem for every fixed hyperbolic group is in LOGCFL.

Proof. By [8], a group G is hyperbolic if and only if G ∼= Γ ∗/R, where R is finite,
length-reducing, and L := {s ∈ Γ ∗ | s

∗→R ε} = {s ∈ Γ ∗ | s
∗↔R ε}. Since G is

a group, the word problem for G is logspace reducible to L. Since R is length-
reducing, L is growing context-sensitive, i.e., it can be generated by a grammar,
where every production is strictly length-increasing. Since every fixed growing
context-sensitive language belongs to LOGCFL [9], the theorem follows. ��

In [10, 15], hyperbolic groups were generalized to hyperbolic monoids. It is
not clear whether Theorem 2 can be extended to hyperbolic monoids. It is also
open, whether the upper bound of LOGCFL from Theorem 2 can be further
improved, for instance to LOGDCFL, which is the class of all problems that are
logspace reducible to a deterministic context-free language [32]. For another class
of automatic monoids, we can precisely characterize the complexity of the word
problem using LOGDCFL: A semi-Thue system R over the alphabet Γ is called
left-basic [29] if: (i) if  ∈ dom(R), r ∈ ran(R) and r = uv then u = v = ε and
(ii) if  ∈ dom(R), r ∈ ran(R), ur = v, and || > |u|, then v = ε. Condition (i)
means that a right-hand side does not strictly contain a left-hand side. Condition
(ii) means that the following kind of overlapping is not allowed:

u
 ∈ dom(R)

r ∈ ran(R)
v �= ε

Let us define the suffix-rewrite relation �R by s �R t if and only if s = u
and t = ur for some u ∈ Γ ∗ and (, r) ∈ R. The following lemma is obvious:

Lemma 2. If R is left-basic, then for every s ∈ IRR(R) and a ∈ Γ we have
sa

∗→R t if and only if sa
∗�R t.
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Left-basic semi-Thue systems generalize monadic semi-Thue systems. Sys-
tems that are finite, monadic, and confluent present monoids that are simulta-
neously rr- and -automatic, but in general neither r- nor r-automatic [26].
Using arguments similar to those from [26], we can show that for a finite, ter-
minating, confluent, and left-basic semi-Thue system R over an alphabet Γ , the
monoid Γ ∗/R is rr-automatic.

Theorem 3. The following problem is in LOGDCFL:
INPUT: A finite, terminating, confluent, and left-basic semi-Thue system R

over an alphabet Γ , and two words s, t ∈ Γ ∗

QUESTION: s
∗↔R t?

Moreover, there exists a finite, length-reducing, confluent, and left-basic semi-
Thue system R over an alphabet Γ such that the word problem for Γ ∗/R is
LOGDCFL-complete.

Proof. Note that the upper bound in the first statement holds in a uniform set-
ting, i.e., the semi-Thue system is part of the input. In order to prove this upper
bound, we will use a machine-based characterization of LOGDCFL: A logspace
bounded deterministic AuxPDA is a deterministic pushdown automaton that
has an auxiliary read-write tape of size O(log(n)) (where n is the input size).
A problem belongs to LOGDCFL if and only if it can be decided by a logspace
bounded deterministic AuxPDA that moreover works in polynomial time [32].

Now, let us assume that the input consists of a tuple (Γ, R, s, t), where R is a
finite, terminating, confluent, and left-basic semi-Thue system over the alphabet
Γ and s, t ∈ Γ ∗. Let n be the length of the binary coding of this input. We
will construct a logspace bounded deterministic AuxPDA that checks in poly-
nomial time, whether NFR(s) = NFR(t). For this, we will first show how to
calculate NFR(s) on a deterministic AuxPDA in logspace and polynomial time.
The basic idea of how to do this appeared many times in the literature, see e.g.
[3–Thm. 4.2.7]. The only slight complication in our situation results from the
fact that the semi-Thue system R belongs to the input. To overcome this, we
need the logspace bounded auxiliary store of our AuxPDA. The correctness of
the following procedure follows from Lemma 2. Our algorithm for computing
NFR(s) works in stages. At the beginning of a stage the pushdown contains a
word from IRR(R) and the auxiliary store contains a pointer to a position i in
the input word s. Note that a symbol a ∈ Γ can be represented as a bit string
of length O(log(n)), thus the pushdown content is a sequence of blocks of length
O(log(n)), where every block represents a symbol from Γ . The stage begins by
pushing the i-th symbol of s onto the pushdown (which is a bit string of length
O(log(n))) and incrementing the pointer to position i + 1 in s. Now we have
to check whether the pushdown content is of the form Γ ∗dom(R). For this we
have to scan every left-hand side of R using a second pointer to the input. Every
 ∈ dom(R) is scanned in reverse order and thereby compared with the top of
the push-down. During this phase, symbols are popped from the pushdown. If
it turns out that the left-hand side that is currently scanned is not a suffix of
the pushdown content, then these symbols must be “repushed”. This can be
done, since the suffix of the pushdown content that was popped so far is a suffix
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of the currently scanned left-hand side  ∈ dom(R), which is still available on
the read-only input tape. If a left-hand side  is found on top of the pushdown,
then the corresponding right-hand side is pushed on the pushdown and we try
to find again a left-hand side on top of the pushdown. If finally no left-hand side
matches a suffix of the pushdown content, then we know that the pushdown con-
tent belongs to IRR(R) and we can proceed with the next stage. Finally, if the
first pointer has reached the end of the input word s (or more precisely points
to the first position following s), then the pushdown content equals NFR(s).

Claim: In the above procedure, after the i-th stage the pushdown has length at
most i ·α, where α = max({1}∪{|r| | r ∈ ran(R)}). Moreover, every stage needs
only polynomial time.

The first statement can be shown by induction on i. Since R is left-basic, it
follows that if w is the pushdown content at the end of the (i− 1)-th stage, then
the pushdown content at the end of the i-th stage either belongs to wΓ or is
of the form ur for some r ∈ ran(R) and some prefix u of w. Moreover, the i-th
stage simulates at most |w| · |R| rewrite steps of R.

In order to check whether NFR(s) = NFR(t), we have to solve one more
problem: If we would calculate NFR(t) in the same way as above, then the
pushdown would finally contain the word NFR(s)NFR(t). But now there seems
to be no way of checking, whether NFR(s) = NFR(t). Thus, we have to apply
another strategy. Note that for a fixed binary coded number 1 ≤ i ≤ α · |s|, it
is easy to modify our algorithm for calculating NFR(s) such that some specified
auxiliary storage cell S contains always the i-th symbol of the pushdown content
(or some special symbol if the pushdown is shorter than i). For this we have
to store the length of the pushdown, for which we need only space O(log(n)).
Moreover, also S only needs space O(log(n)). Thus, at the end of our modified
algorithm for computing NFR(s), S contains the symbol NFR(s)[i] (the i-th
symbol of NFR(s)) or some special symbol in case |NFR(s)| < i. Next, we flush
the pushdown and repeat the same procedure with the other input word t and
the same i, using another storage cell T . In this way we can check, whether
NFR(s)[i] = NFR(t)[i]. Finally, we repeat this step for every 1 ≤ i ≤ max{α ·
|s|, α · |t|}. The latter bound is the maximal pushdown-length that may occur,
which follows from the above claim. Note that also i needs only space O(log(n)).
This concludes the description of our LOGDCFL-algorithm.

It remains to construct a finite, length-reducing, confluent, and left-basic
semi-Thue system R such that the corresponding word problem is LOGDCFL-
hard. In [32], Sudborough has shown that there exists a fixed deterministic
context-free language L ⊆ Σ∗ with a LOGDCFL-complete membership prob-
lem. Let A = (Q, Δ, Σ, δ, q0,⊥) be a deterministic pushdown automaton with
L = L(A), where Q is the set of states, q0 ∈ Q is the initial state, Δ is the
pushdown alphabet, ⊥ ∈ Δ is the bottom symbol, and δ : Δ×Q×Σ → Δ∗×Q
is the transition function. By [32–Lem. 7] we may assume that A makes no ε-
moves and that A accepts L by empty store in state q0. Let m = max{|γ| |
δ(A, q, a) = (γ, p), q, p ∈ Q, A ∈ Δ, a ∈ Σ}; thus, m is the maximal length of a
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sequence that is pushed on the pushdown in one step. Let # �∈ Δ∪Q∪Σ be an
additional symbol and let Γ = Δ ∪ Q ∪ Σ ∪ {#}. Define the semi-Thue system
R by R = {Aqam# → γp | δ(A, q, a) = (γ, p)}; it is length-reducing, confluent,
and left-basic. Moreover, if h : Σ∗ → (Σ ∪ {#})∗ denotes the homomorphism
defined by h(a) = am#, which can be computed in logspace, then w ∈ L if and
only if ⊥q0h(w) ∗→R q0 if and only if ⊥q0h(w) ∗↔R q0. ��

5 Cayley-Graphs

Let M be a monoid, which is finitely generated by Γ , and let ◦ denote the
monoid operation of M. The right Cayley-graph of M wrt. Γ is the Γ -labeled
directed graph C(M, Γ ) = (M, ({(u, v) | u ◦ a = v})a∈Γ ). Thus, edges are
defined via multiplication with generators on the right. The graph that is de-
fined analogously via multiplication with generators on the left is called the
left Cayley-graph of M wrt. Γ . In the following, we will always refer to the
right Cayley-graph when just speaking of the Cayley-graph. Cayley-graphs were
mainly investigated for groups, in particular they play an important role in com-
binatorial group theory [23] (see also the survey of Schupp [28]). Combinatorial
properties of Cayley-graphs of monoids are studied in [17]. In [30, 31], Cayley-
graphs of automatic monoids are investigated. The work of Calbrix and Knapik
on Thue-specifications [5, 19] covers Cayley-graphs of monoids that are presented
by terminating and confluent semi-Thue systems as a special case.

In [21], an investigation of Cayley-graphs from a logical point of view was
initiated. For a given Cayley-graph C = (M, (Ea)a∈Γ ) we consider first-order
formulas over the structure C. Atomic formulas are of the form x = y and
Ea(x, y), (there is an a-labeled edge from x to y) where x and y are variables
that range over the monoid M. Instead of (x, y) ∈ Ea we write x ◦ a = y, or
briefly xa = y. First-order formulas are built from atomic formulas using Boolean
connectives and quantifications over variables. The notion of a free variable is
defined as usual. A first-order formula without free variables is called a first-
order sentence. For a first-order sentence ϕ, we write C |= ϕ if ϕ evaluates to
true in C. The first-order theory of the Cayley-graph C, denoted by FOTh(C), is
the set of all first-order sentences ϕ such that C |= ϕ. For a detailed introduction
into first-order logic over arbitrary structures see [12].

If the monoid M is finitely generated both by Γ and Σ, then FOTh(C(M, Γ ))
is logspace reducible to FOTh(C(M, Σ)) and vice versa [20]. Thus, analogously to
word problems, the decidability (resp. complexity) status of the first-order theory
of a Cayley-graph does not depend on the chosen set of generators. ¿From the
definition of an αr-automatic monoid M it follows immediately that C(M, Γ )
is an automatic graph in the sense of [1, 18] (but the converse is even false for
groups, see e.g. [2]). Thus, since every automatic graph has a decidable first-order
theory [18], FOTh(C(M, Γ )) is decidable in case M is αr-automatic (α =  or
α = r). If M is an α-automatic monoid (α =  or α = r), then the first-order
theory of the left Cayley-graph of M is decidable.
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A problem is elementary decidable if it can be solved in time O(2·
··2

n

), where
the height of this tower of exponents is constant. By [1], there exists an auto-
matic graph with a nonelementary first-order theory. This complexity is already
realized by Cayley-graphs of automatic monoids:

Theorem 4. There is a finite, length-lexicographic, and confluent semi-Thue
system R ⊆ Γ ∗ × Γ ∗ such that (Γ, R, IRR(R)) is an αβ-automatic presentation
for Γ ∗/R for all α, β ∈ {, r} and FOTh(C(Γ ∗/R, Γ )) is nonelementary.

Proof. Let Γ = {a, b, ā, b̄, $1, $2, $a} and let the semi-Thue system R over Γ
consist of the following rules, where c ∈ {a, b}:

c $1 → $1c c $2 → $2c ā $a → a c $a → $ac
c̄ $1 → c c̄ $2 → $1c̄ b̄ $a → $ab̄

R is length-lexicographic and confluent. Arguments similar to those from the
proof of Theorem 1 show that (Γ, R, IRR(R)) is an αβ-automatic presentation
of M = Γ ∗/R. Let C = C(M, Γ ). It remains to show that FOTh(C) is not
elementary decidable. For this we reduce the first-order theory of finite words
over {a, b} to FOTh(C). The former theory is defined as follows: A word w =
a1a2 · · · an ∈ {a, b}∗ of length n is identified with the relational structure Sw =
({1, . . . , n}, <,Qa), where < is the usual order on natural numbers and Qa is
the unary predicate {i ∈ {1, . . . , n} | ai = a}. Then the first-order theory of
finite words over {a, b} consists of all first-order sentences φ that are built up
from the atomic formulas x < y and Qa(x) such that Sw |= φ for every word
w ∈ {a, b}∗. It is known that the first-order theory of finite words is decidable
but not elementary, see e.g. [7–Example 8.1] for a simplified proof.

For our reduction first notice that IRR(R) = {$1, $2, $a}∗{a, b, ā, b̄}∗. Hence,
the latter set can be identified with the monoid M. For x ∈ IRR(R) we have x ∈
{$1, $2, $a}∗{a, b}∗ if and only if x$2$1 �= x$1$1 in M. This allows us to represent
all words from {a, b}∗ in C. The fact that a word w ∈ {a, b}∗ is represented by
infinitely many nodes of C, namely by all elements from {$1, $2, $a}∗w does
not cause any problems; it is only important that every word w ∈ {a, b}∗ is
represented at least once. In the sequel let us fix x = vw with v ∈ {$1, $2, $a}∗
and w ∈ {a, b}∗. The set of all positions within the word w is in one-to-one
correspondence with the set of all y such that y$1 = x in M: the latter holds
if and only if ∃w1, w2 ∈ {a, b}∗ ∃c ∈ {a, b} : w = w1cw2 and y = vw1c̄w2.
Thus, we can quantify over positions of the word w by quantifying in C over
all those nodes y such that y$1 = x in M. Next, assume that y = vw1c̄w2 and
w = w1cw2, i.e., y represents the position |w1|+1 of w. Then c = a if and only if
y$a = x in M; thus we can express that a position is labeled with the symbol a.
It remains to express that a position is smaller than another one. Assume that
y = vw1c̄w2, y′ = vw′1d̄w′2, w1cw2 = w′1dw′2 = w, and w1 �= w′1, i.e., the two
positions represented by y and y′ are different. Then |w1| < |w′1| if and only if
∃z ∈ M : z$1 = y ∧ z$2 = y′ in M.
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From the preceding discussion it follows that for every first-order sentence
ψ over the signature (<, Qa) we can construct in polynomial time a first-order
formula φ(x) over the Cayley-graph C such that ψ belongs to the first-order
theory of finite words if and only if C |= ∀x : φ(x). This proves the theorem. ��

Corollary 2. There exists a finitely presented monoid M such that M is si-
multaneously αβ-automatic for all α, β ∈ {, r} and FOTh(C(M, Γ )) is not ele-
mentary decidable.

Since the word problem of an automatic group can be solved in time O(n2),
the results from [20] imply that the nonelementary lower bound from Corol-
lary 2 cannot be realized by an automatic group. This fact even holds for au-
tomatic monoids of finite geometric type: A finitely generated monoid M has
finite geometric type if for some (and hence every) finite generating set Γ , the
Cayley-graph C(M, Γ ) has bounded degree [30], i.e., the number of neighbors of
any node is bounded by a fixed constant. Every right-cancellative monoid has fi-
nite geometric type, but for instance the bicyclic monoid {a, b}∗/{(ab, ε)} is not
right-cancellative but has finite geometric type. Since the Cayley-graph of an
αr-automatic monoid of finite geometric type is an automatic graph of bounded
degree, and the first-order theory of every automatic graph of bounded degree

belongs to DSPACE(222O(n)

) [22], we obtain:

Theorem 5. Let M be an αr-automatic monoid (α ∈ {r, }) of finite geometric

type. Then FOTh(C(M, Γ )) belongs to DSPACE(222O(n)

).

We conclude this paper with an undecidability result for automatic monoids.
Note that for an αr-automatic monoid M (α ∈ {r, }) it is decidable whether
for given u, v ∈ M there exists x ∈ M such that xu = v in M, because this is a
first-order property of the Cayley-graph. On the other hand, the reverse question
(∃x : ux = v, i.e., reachability in the Cayley-graph) is undecidable in general:

Theorem 6. There exists a finitely presented monoid M that is simultaneously
r- and rr-automatic such that for given u, v ∈ M it is undecidable whether
∃x ∈ M : ux = v in M.

The proof of this result uses the same techniques as the proof of Theorem 1.
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Abstract. In this paper we implement bottom-up tree series trans-
ducers (tst) over the semiring A with the help of bottom-up weighted
tree automata (wta) over an extension of A. Therefore we firstly intro-
duce bottom-up DM-monoid weighted tree automata (DM-wta), which
essentially are wta using an operation symbol of a DM-monoid instead of
a semiring element as transition weight. Secondly, we show that DM-wta
are indeed a generalization of tst (using pure substitution). Thirdly, given
a DM-wta we construct a semiring A along with a wta such that the wta
computes a formal representation of the semantics of the DM-wta.

Finally, we demonstrate the applicability of our presentation result
by deriving a pumping lemma for deterministic tst as well as determin-
istic DM-wta from a pumping lemma for deterministic wta.

1 Introduction

In formal language theory several different accepting and transducing devices
were intensively studied [13]. A classical folklore result shows how to implement
generalized sequential machines (cf., e.g., [1]) on weighted automata [14, 5, 11]
with the help of the particular semiring (P(Σ∗),∪, ◦) of languages over the
alphabet Σ. Naturally, this semiring is not commutative, notwithstanding the
representation allows us to transfer results obtained for weighted automata to
generalized sequential machines. In this sense, the study of arbitrary weighted au-
tomata subsumes the study of generalized sequential machines.

We translate the above representation result to tree languages (cf., e.g., [4]),
i.e., we show how to implement bottom-up tree transducers [12, 15] on bottom-up
weighted tree automata (wta) [3, 9]. More generally, we even unearth a relation-
ship between bottom-up tree series transducers (tst) [7, 8] using pure substitution
and wta. Therefore we first introduce bottom-up DM-monoid weighted tree au-
tomata (DM-wta), which essentially are wta where the weight of a transition is
an operation symbol of a DM-monoid [9] instead of a semiring element. These de-
vices can easily simulate both wta and tst by a proper choice of the DM-monoid
(cf. Proposition 5). Next we devise a monoid A which is capable of emulating
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the effect of the operation symbols of a DM-monoid D (cf. Theorem 6). Then
we extend A to a semiring using the addition of a semiring B for which D is a
semimodule (cf. Theorem 8). In this way we obtain an abstract addition (of B),
which allows us to perform the concrete addition (of D) later. Thereby we obtain
a representation result, in which a tst or a DM-wta is presented as wta, which
computes a formal representation of the semantics of the tst or DM-wta.

For a tst M over a completely idempotent semiring A, e.g., all tree transduc-
ers, we can refine the constructed semiring with the help of a congruence relation
such that the factor semiring uses (an extension of) the concrete addition of A

(cf. Theorem 10). Then one can construct a wta such that it computes the same
tree series as M . Finally, we note that the construction of the semiring pre-
serves many beneficial properties (concerning the addition) of the original DM-
monoid.

Fig. 1. Generalization hierarchy

Hence the study of wta subsumes the study of tst over completely idempotent
semirings. In fact, the subsumption also holds for deterministic devices, i.e., the
study of deterministic wta subsumes the study of deterministic tst or DM-wta.
To illustrate the applicability of the relationship we transfer a pumping lemma [2]
for deterministic finite wta to both tst and DM-wta. This is possible, because the
semiring addition is irrelevant for deterministic wta and the determinism prop-
erty is preserved by the constructions. This yields that for a given tst or DM-
wta M we can construct a wta M ′ such that ‖M ′‖ = ‖M‖. Hence the pump-
ing lemma for wta can readily be transfered to tst and DM-wta.
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2 Preliminaries

The set {0, 1, 2, . . .} of all non-negative integers is denoted by IN and we let
IN+ = IN \ {0}. In the following let k, n ∈ IN. The interval [k, n] abbreviates
{ i ∈ IN | k ≤ i ≤ n } and we use [n] to stand for [1, n]. The set of all subsets
of a set A is denoted by P(A) and the set of all (total) mappings f : A −→ B
is denoted by BA as customary. Finally, the set of all words over A is displayed
as A∗, the length of a word w ∈ A∗ is denoted by |w|, and · is used to denote
concatenation as well as to delimit subwords.

2.1 Trees and Substitutions

A non-empty set Σ equipped with a mapping rkΣ : Σ −→ IN is called an oper-
ator alphabet. The set Σk = {σ ∈ Σ | rkΣ(σ) = k } denotes the set of operators
of arity k. Given a set V , the set TΣ(V ) of (finite, labeled, and ordered) Σ-trees
indexed by V is the smallest set T such that Σ0 ∪ V ⊆ T and for every k ∈ IN+,
σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . The notation TΣ abbrevi-
ates TΣ(∅). The mapping pos : TΣ(V ) −→ P(IN∗) is defined for every v ∈ V ,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V ) by

pos(v) = {ε} pos(σ(t1, . . . , tk)) = {ε} ∪ { i·wi | i ∈ [k], wi ∈ pos(ti) } .

Moreover, height(t) = 1 + max{ |w| | w ∈ pos(t) } for every t ∈ TΣ(V ). The
label of t at w ∈ pos(t) is denoted by labt(w), i.e.,

labv(ε) = v labσ(t1,...,tk)(w) =

{
σ , if w = ε

labti
(wi) , if w = i·wi with i ∈ [k]

.

For convenience, we assume a countably infinite set X = {xi | i ∈ IN+ }
of formal variables and its finite subsets Xn = {xi | i ∈ [n] }. A Σ-tree t ∈
TΣ(Xn) is in the set T̂Σ(Xn), if and only if every x ∈ Xn occurs exactly once
in t. Given t ∈ TΣ(Xn) and t′1, . . . , t

′
n ∈ TΣ(V ), the expression t[t′1, . . . , t

′
n]

denotes the (parallel) tree substitution of t′i for every occurrence of xi in t, i.e.,
xi[t′1, . . . , t

′
n] = t′i for every i ∈ [n] and

σ(t1, . . . , tk)[t′1, . . . , t
′
n] = σ(t1[t′1, . . . , t

′
n], . . . , tk[t′1, . . . , t

′
n])

for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Xn). Let t ∈ T̂Σ(Xn) with n ≥ 1
and t′ ∈ T̂Σ(Xk). The non-identifying tree substitution of t′ into t, denoted
by t〈|t′|〉, yields a tree of T̂Σ(Xk+n−1) which is defined by

t〈|t′|〉 = t[t′, xk+1, . . . , xk+n−1] .

This way no variable of t′ is identified with a variable of t. To complete the def-
inition we let t〈|t′|〉 = t whenever t ∈ TΣ , i.e., n = 0. One can compare this with
the classical lambda-calculus, where (except for reordering of the arguments)

(λx1 . . . xn.t)(λx1 . . . xk.t
′) ⇒ λx1 . . . xk+n−1.t〈|t′|〉 .
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2.2 Algebraic Structures

Given a carrier set A, an operator alphabet Ω, and a family I = ( Ik )k∈IN of
mappings Ik : Ωk −→ A(Ak) interpreting the symbols as operations on A, the
triple (A,Ω, I) is called an (abstract) Ω-algebra. The algebra (TΩ , Ω, I) where
Ik(ω) = ω for every k ∈ IN, ω ∈ Ωk, and ω(t1, . . . , tk) = ω(t1, . . . , tk) for
every t1, . . . , tk ∈ TΩ is called the initial (term) Ω-algebra. In the sequel we
often do not differentiate between the symbol and the actual operation. Usually
the context will provide sufficient information as to clarify which meaning is
intended. Further we occasionally omit the operator alphabet and instead list
the operators and identify nullary operators with elements of A.

Monoids are algebraic structures A = (A,⊗) with carrier set A, an asso-
ciative operation ⊗ : A2 −→ A, i.e., a1 ⊗ (a2 ⊗ a3) = (a1 ⊗ a2) ⊗ a3 for
every a1, a2, a3 ∈ A, and a neutral element 1 ∈ A, i.e., 1 ⊗ a = a = a⊗ 1 for ev-
ery a ∈ A. The neutral element is unique and denoted by 0A or 1A in the sequel.
The monoid is said to be commutative, if a1 ⊗ a2 = a2 ⊗ a1 for every a1, a2 ∈ A,
and it is said to be idempotent, if a = a ⊗ a for every a ∈ A. A commutative
monoid is called complete, if it is possible to define an (infinitary) operation

⊗
such that the following two additional axioms hold for all index sets I, J and all
families ( ai )i∈I of monoid elements.

(i)
⊗

i∈{j} ai = aj and
⊗

i∈{j1,j2} ai = aj1 ⊗ aj2 for j1 �= j2.
(ii)

⊗
j∈J

⊗
i∈Ij

ai =
⊗

i∈I ai, if
⋃

j∈J Ij = I and Ij1 ∩ Ij2 = ∅ for j1 �= j2.

The relation 3 ⊆ A2 is defined by a1 3 a2 if and only if there exists a ∈ A
such that a1⊗a = a2. If 3 is a partial order, then A is said to be naturally ordered.
Finally, a naturally ordered and complete monoid is continuous, if for every
a ∈ A, index set I, and family ( ai )i∈I of elements ai ∈ A⊗

i∈E

ai 3 a for all finite E ⊆ I ⇐⇒
⊗
i∈I

ai 3 a .

Note that an idempotent monoid is continuous, if and only if it is completely
idempotent, i.e., it is complete and for every non-empty index set I and ele-
ment a ∈ A we have that

⊗
i∈I a = a.

Algebraic structures A = (A,⊕,4) made of two monoids (A,⊕) and (A,4)
with neutral elements 0A and 1A, respectively, of which the former monoid
is commutative and the latter monoid has 0A as an absorbing element, i.e.,
a 4 0A = 0A = 0A 4 a for every a ∈ A, are called semirings (with one and
absorbing zero), if the monoids are connected via the distributivity laws, i.e.,
a14(a2⊕a3) = (a14a2)⊕(a14a3) and (a1⊕a2)4a3 = (a14a3)⊕(a24a3) for
every a1, a2, a3 ∈ A. The semiring A is called (additively) idempotent, if (A,⊕) is
idempotent. Finally, a complete semiring consists of a complete monoid (A,⊕)
and satisfies the additional constraint that for every index set I, a ∈ A, and
family ( ai )i∈I of semiring elements⊕

i∈I

(a4 ai) = a4
⊕
i∈I

ai and
⊕
i∈I

(ai 4 a) =
(⊕

i∈I

ai

)
4 a .
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Let B = (B,+) be a commutative monoid, A = (A,⊕,4) be a semiring,
and · : A×B −→ B be a mapping. Then B is called a (left) A-semimodule
(via ·), if the conditions (i)-(iii) hold for all a, a1, a2 ∈ A and all b, b1, b2 ∈ B.

(i) a · 0B = 0B and 1A · b = b.
(ii) (a1 4 a2) · b = a1 · (a2 · b).
(iii) a · (b1 + b2) = (a · b1) + (a · b2) and (a1 ⊕ a2) · b = (a1 · b) + (a2 · b).

Given that B and A are complete, B is called a complete A-semimodule, if for
every family ( bi )i∈I of monoid elements and family ( ai )i∈I of semiring elements
the additional axioms (iv) and (v) hold.

(iv) a ·
∑

i∈I bi =
∑

i∈I(a · bi)
(v)

(⊕
i∈I ai

)
· b =

∑
i∈I(ai · b)

Clearly each commutative monoid B = (B,+) is an IN-semimodule, where
the semiring of non-negative integers is given by (IN,+, ·), using the mixed op-
eration · : IN ×B −→ B defined as n · b =

∑
i∈[n] b for every n ∈ IN and b ∈ B.

Note that
∑

i∈[0] b = 0B. Similarly, every commutative and continuous monoid
is a complete IN∞-semimodule (cf. [9]), where IN∞ = (IN∪{+∞},+, ·). Further-
more, any idempotent and commutative monoid B is a IB-semimodule where
IB = ({0, 1},∨,∧) is the boolean semiring, and B is a complete IB-semimodule,
if B additionally is completely idempotent (cf. [9]).

Let (D,Ω) be an Ω-algebra. The algebraic structure D = (D,+, Ω) is called
a distributive multi-operator monoid (DM-monoid) [9], if (D,+) is a commuta-
tive monoid with neutral element 0D and for every k ∈ IN, ω ∈ Ωk, i ∈ [k],
and d, d1, . . . , dk ∈ D

(i) ω(d1, . . . , di−1, 0D, di+1, . . . , dk) = 0D,
(ii) ω(d1, . . . , di−1, d+ di, di+1, . . . , dk) = ω(d1, . . . , d, . . . , dk) + ω(d1, . . . , dk).

For D to be complete we demand that (D,+) is complete and for every k ∈ IN,
ω ∈ Ωk, index sets I1, . . . , Ik, and family ( di )i∈Ij

of monoid elements for every
j ∈ [k] the equality

ω(
∑

i1∈I1

di1 , . . . ,
∑

ik∈Ik

dik
) =

∑
i1∈I1

· · ·
∑

ik∈Ik

ω(di1 , . . . , dik
)

is satisfied. Finally, D is continuous, if D is complete and (D,+) is continuous.
The DM-monoid D is said to be an A-semimodule for some commutative

semiring A = (A,⊕,4), if (D,+) is an A-semimodule and for every k ∈ IN,
ω ∈ Ωk, a ∈ A, i ∈ [k], and d1, . . . , dk ∈ D the equality

ω(d1, . . . , di−1, a · di, di+1, . . . , dk) = a · ω(d1, . . . , dk)

holds. The DM-monoid D is a complete A-semimodule, if both A and D are
by itself complete and for every a ∈ A, d ∈ D, index set I, and family ( ai )i∈I

and ( di )i∈I of semiring and monoid elements, respectively, we have(⊕
i∈I

ai

)
· d =

∑
i∈I

(ai · d) and a ·
∑
i∈I

di =
∑
i∈I

(a · di) .

Clearly, every DM-monoid is an IN-semimodule.



326 A. Maletti

2.3 Formal Power Series and Tree Series Substitution

Any mapping ϕ : T −→ A from a set T into a commutative monoid A = (A,⊕) is
also called (formal) power series. The set of all power series is denoted by A〈〈T 〉〉.
We write (ϕ, t) instead of ϕ(t) for ϕ ∈ A〈〈T 〉〉 and t ∈ T . The sum ϕ1 ⊕ϕ2 of two
power series ϕ1, ϕ2 ∈ A〈〈T 〉〉 is defined pointwise by (ϕ1⊕ϕ2, t) = (ϕ1, t)⊕(ϕ2, t)
for every t ∈ T . The support supp(ϕ) of ϕ is defined by

supp(ϕ) = { t ∈ T | (ϕ, t) �= 0A } .

If the support of ϕ is finite, then ϕ is said to be a polynomial. The power
series with empty support is denoted by 0̃A.

In case T = TΣ(V ) for some ranked alphabet Σ and set V , then ϕ is also
called (formal) tree series. Let A = (A,⊕,4) now be a complete semiring and
let n ∈ IN, ϕ ∈ A〈〈TΣ(Xn)〉〉, and ψ1, . . . , ψn ∈ A〈〈TΣ〉〉. We define the tree series
substitution of (ψ1, . . . , ψn) into ϕ, denoted by ϕ←− (ψ1, . . . , ψn), as

ϕ←− (ψ1, . . . , ψn) =
⊕

t∈TΣ(Xn),
t1,...,tn∈TΣ

(
(ϕ, t) 4

⊙
i∈[n]

(ψi, ti)
)
t[t1, . . . , tn] .

Note that the order in the product is given by the order 1 < · · · < n of the
indices. Furthermore, note that irrespective of the number of occurrences of xi

the coefficient (ψi, ti) is taken into account exactly once, even if xi does not
appear at all in t. This notion of substitution is called pure IO-substitution [7].
Other notions of substitution, like o-IO-substitution [8] and OI-substitution [10],
have been defined, but in this paper we will exclusively deal with pure IO-
substitution.

2.4 Tree Automata and Tree Series Transducers

Let I and J be sets. An (I×J)-matrix over a set S is a mappingM : I × J −→ S.
The set of all (I×J)-matrices is denoted by SI×J and the (i, j)-entry with i ∈ I
and j ∈ J of a matrix M ∈ SI×J is usually denoted by Mi,j instead of M(i, j).
Let Σ be an operator alphabet, I be a non-empty set, and A = (A,⊕) be a com-
mutative monoid. Every family μ = (μk )k∈IN of mappings μk : Σk −→ AI×Ik

is
called tree representation over Σ, I, and A. A deterministic tree representation
additionally fulfills the restriction that for every σ ∈ Σk and i1, . . . , ik ∈ I there
exists at most one i ∈ I such that μk(σ)i,(i1,...,ik) �= 0A.

A (bottom-up) weighted tree automaton (wta) is a system M = (I,Σ,A, F, μ)
comprising of a set I of states, a finite input ranked alphabet Σ, a semiring
A = (A,⊕,4), a vector F ∈ AI of final weights, and a tree representation μ over
Σ, I, and A. If I is infinite, then A must be complete, otherwise M is called finite.
Moreover, M is deterministic, if μ is deterministic. Let μ = (μk(σ) )k∈IN,σ∈Σk

where μk(σ) : (AI)k −→ AI is defined componentwise for every i ∈ I and
V1, . . . , Vk ∈ AI by

μk(σ)(V1, . . . , Vk)i =
⊕

i1,...,ik∈I

μk(σ)i,(i1,...,ik) 4 (V1)i1 4 · · · 4 (Vk)ik
.
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Let hμ : TΣ −→ AI be the unique homomorphism from (TΣ , Σ) to (AI ,μ).
The tree series ‖M‖ ∈ A〈〈TΣ〉〉 recognized by M is (‖M‖, t) =

⊕
i∈I Fi 4 hμ(t)i

for every t ∈ TΣ .
A (bottom-up) tree series transducer (tst) M is a system (I,Σ,Δ,A, F, μ) in

which I is a set of states, Σ and Δ are finite input and output ranked alpha-
bets, respectively, A = (A,⊕,4) is a semiring, F ∈ A〈〈TΔ(X1)〉〉I is a vector
of final outputs, and μ is a tree representation over Σ, I, and A〈〈TΔ(X)〉〉 such
that μk(σ) ∈ A〈〈TΔ(Xk)〉〉I×Ik

for every k ∈ IN and σ ∈ Σk. If I is finite and
each tree series in the range of μk(σ) is a polynomial, then M is called finite,
otherwise A must be complete. Finite tst over the Boolean semiring IB are also
called tree transducers. The tst M is deterministic, if μ is deterministic. Let
μ = (μk(σ) )k∈IN,σ∈Σk

where μk(σ) : (A〈〈TΔ〉〉I)k −→ A〈〈TΔ〉〉I is defined com-
ponentwise for every i ∈ I and V1, . . . , Vk ∈ A〈〈TΔ〉〉I by

μk(σ)(V1, . . . , Vk)i =
⊕

i1,...,ik∈I

μk(σ)i,(i1,...,ik) ←− ((V1)i1 , . . . , (Vk)ik
) .

Let hμ : TΣ −→ A〈〈TΔ〉〉I be the unique homomorphism from the initial
Σ-algebra (TΣ , Σ) to (A〈〈TΔ〉〉I ,μ). For every t ∈ TΣ the tree-to-tree-series
transformation (t-ts transformation) ‖M‖ : TΣ −→ A〈〈TΔ〉〉 computed by M
is (‖M‖, t) =

⊕
i∈I Fi ←− (hμ(t)i).

3 Establishing the Relationship

Inspired by the automaton definition of [9] we define DM-monoid weighted
tree automata (DM-wta). Roughly speaking, to each transition of a DM-wta
an operation symbol of a DM-monoid is associated.

Definition 1. A DM-monoid weighted tree automaton (DM-wta) is a system
M = (I,Σ,D, F, μ), where

– I is a non-empty set of states,
– Σ is a finite operator alphabet of input symbols,
– D = (D,+, Ω) is a DM-monoid,
– F ∈ (Ω1)I is the final weight vector, and
– μ = (μk )k∈IN is a tree representation over I, Σ, and Ω.

If I is infinite, then D must be complete. Otherwise, M is called finite. Fi-
nally, M is deterministic, if μ is deterministic.

Unless stated otherwise let M = (I,Σ,D, F, μ) be a DM-wta over the DM-
monoid D = (D,+, Ω). In the following let k ∈ IN, σ ∈ Σk, i ∈ I, and t =
σ(t1, . . . , tk) ∈ TΣ . Moreover, all function arguments range over their respective
domains. Next we define two semantics, namely initial algebra semantics [16]
and a semantics based on runs. In the latter the weight of a run is obtained
by combining the weights obtained for the direct subtrees with the help of the
operation symbol associated to the topmost transition. Nondeterminism is taken
care of by adding the weights of all runs on a given input tree.
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Definition 2. Let μ = (μk(σ) )k∈IN,σ∈Σk
where μk(σ) : (DI)k −→ DI is de-

fined componentwise for every i ∈ I by

μk(σ)(V1, . . . , Vk)i =
∑

i1,...,ik∈I

μk(σ)i,(i1,...,ik)((V1)i1 , . . . , (Vk)ik
) .

Let hμ : TΣ −→ DI be the unique homomorphism from (TΣ , Σ) to (DI ,μ).
The tree series recognized by M is defined as (‖M‖, t) =

∑
i∈I Fi(hμ(t)i).

Definition 3. A run on t ∈ TΣ is a mapping r : pos(t) −→ I. The set of
all runs on t is denoted by R(t). The weight of r is defined by the mapping
wtr : pos(t) −→ D which is defined for w ∈ pos(t) with labt(w) ∈ Σk by

wtr(w) = μk(labt(w))r(w),(r(w·1),...,r(w·k))(wtr(w·1), . . . ,wtr(w·k)) .

The run-based semantics of M is (|M |, t) =
∑

r∈R(t) Fr(ε)(wtr(ε)).

The next proposition states that the initial algebra semantics coincides with
the run-based semantics, which is mainly due to the distributivity of the DM-
monoid. Intuitively speaking, this reflects the property that nondeterminism
can equivalently either be handled locally (initial algebra semantics) or globally
(run-based semantics).

Proposition 4. For every DM-wta M we have ‖M‖ = |M |.
The next proposition demonstrates how powerful DM-wta are. In fact, every

wta and every tst can be simulated by a DM-wta.

Proposition 5. Let M1 be a wta and M2 be a tst.

(i) There exists a DM-wta M such that ‖M‖ = ‖M1‖.
(ii) There exists a DM-wta M such that ‖M‖ = ‖M2‖.
Proof. Since it is clear (cf. [7]), how to simulate a wta with the help of a tst, we
only show Statement (ii). Let M2 = (I2, Σ,Δ,A, F2, μ2) be a tst,

Ω = {ϕ
k
| k ∈ IN, ϕ ∈ A〈〈TΔ(Xk)〉〉 } ,

and let ϕ
k

: A〈〈TΔ〉〉k −→ A〈〈TΔ〉〉 be defined as

ϕ
k
(ψ1, . . . , ψk) = ϕ ←− (ψ1, . . . , ψk) .

Then, by [9, 7], D = (A〈〈TΔ〉〉,⊕, Ω) is a DM-monoid, which is complete
whenever A is. Hence we let M = (I2, Σ,D, F, μ) with Fi = F2(i)1 and for every
i, i1, . . . , ik ∈ I2 we set μk(σ)i,(i1,...,ik) = (μ2)k(σ)i,(i1,...,ik)

k
.

Note that in both statements of Proposition 5, M can be constructed to be
deterministic, whenever the input device, i.e., M1 or M2, is deterministic. Let
D = (D,Ω) be an Ω-algebra. In the following ω ranges over Ωk. We denote
by ΩX the set of all terms {ω(x1, . . . , xk) | ω ∈ Ωk }. We can define a monoid
which simulates the algebra D as follows. Recall that we use overlining, if we
want to refer to the term obtained by top-concatenation of the overlined symbol
with its arguments.
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Theorem 6. For every Ω-algebra (D,Ω) there exists a monoid (B,←) such
that D ∪ΩX ⊆ B and for all d1, . . . , dk ∈ D

ω(d1, . . . , dk) = ω(x1, . . . , xk) ← d1 ← · · · ← dk .

Proof. Assume that Ω∩D = ∅ and let Ω′ = Ω∪D, where the elements of D are
treated as nullary symbols. Firstly, we define a mapping h : TΩ′(X) −→ TΩ′(X)
for every v ∈ D ∪X as follows.

h(v) = v

h(ω(t1, . . . , tk)) =

{
ω(h(t1), . . . , h(tk)) , if h(t1), . . . , h(tk) ∈ D

ω(h(t1), . . . , h(tk)) , otherwise

Note that h(t) ∈ T̂Ω′(Xn) whenever t ∈ T̂Ω′(Xn). Secondly, let

B = D∗ ∪
⋃

n∈IN+

D∗ · T̂Ω′(Xn) .

Next we define the operation ← : B2 −→ B for every w ∈ D∗, b ∈ B,
t ∈ T̂Ω′(Xn), and t′ ∈ D ∪ T̂Ω′(Xn) by

w ← b = w·b
w·t ← ε = w·t

w·t ← t′·b = w·(h(t〈|t′|〉)) ← b .

Roughly speaking, one can understand ← as function composition where the
arguments are lambda-terms and the evaluation (which is done via h) is call-by-
value. Next we would like to extend this monoid to a semiring by introducing
the addition of the DM-monoid. However, the addition should also be able to
sum up terms, hence we first use an abstract addition coming from a semiring
for which the DM-monoid is a complete semimodule.

Let A = (A,⊕,4) be a semiring. We lift the operation ← : B2 −→ B to an
operation ← : A〈〈B〉〉2 −→ A〈〈B〉〉 by

ψ1 ← ψ2 =
⊕

b1,b2∈B

(
(ψ1, b1) 4 (ψ2, b2)

)
(b1 ← b2) .

Let the monoid D = (D,+) be a complete A-semimodule. Then we define the
sum of a series ϕ ∈ A〈〈D〉〉 (summed in D) by the mapping

∑
: A〈〈D〉〉 −→ D

with
∑
ϕ =

∑
d∈D(ϕ, d) · d. For a vector V ∈ A〈〈D〉〉I we let (

∑
V )i =

∑
Vi. By

convenience we identify the series 1A d with d.

Proposition 7. Let the DM-monoid D = (D,+, Ω) be a complete (A,⊕,4)-
semimodule and ϕ1, . . . , ϕk ∈ A〈〈D〉〉. Then

(i)
∑

(
⊕

i∈I ϕi) =
∑

i∈I

∑
ϕi for every family (ϕi )i∈I of series and

(ii) ω(
∑
ϕ1, . . . ,

∑
ϕk) =

∑(
ω(x1, . . . , xk) ← ϕ1 ← · · · ← ϕk

)
.
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Thus we can construct a semiring with the following properties.

Theorem 8. For every continuous DM-monoid D = (D,+, Ω) there exists a
semiring (C,⊕,←) such that D ∪ΩX ⊆ C and for all d1, . . . , dk ∈ D:

(i) ω(d1, . . . , dk) = ω(x1, . . . , xk) ← d1 ← · · · ← dk,
(ii)

∑
(
⊕

i∈I di) =
∑

i∈I di.

Proof. Let A = (A,⊕,4) be a semiring such that D is a complete A-semimodule.
For example, A can always be chosen to be IN∞. By Theorem 6 there exists a
monoid (B,←) such that Statement (i) holds. Consequently, let C = A〈〈B〉〉 and
← : C2 −→ C be the extension of ← on B. Clearly, (C,⊕,←) is a semiring and
by Theorem 6 and Proposition 7 the Statements (i) and (ii) hold.

The semiring (A〈〈B〉〉,⊕,←) constructed in Theorem 8 will be denoted by
GA(D) in the sequel. We note that GA(D) is complete, because A is complete
(cf. [9]). Hence we are ready to state the first main representation theorem.

Theorem 9. Let M1 = (I1, Σ,D, F1, μ1) be a DM-wta and M2 be a tst.

– There exists a wta M = (I1, Σ,GA(D), F, μ) such that ‖M1‖ =
∑

‖M‖.
– There exists a wta M such that ‖M2‖ =

∑
‖M‖.

Proof. The second statement follows from the first and Proposition 5, so it re-
mains to prove the first statement. Let Fi = (F1)i(x1) and

μk(σ)i,(i1,...,ik) = (μ1)k(σ)i,(i1,...,ik)(x1, . . . , xk) .

Note that again M can be chosen to be deterministic, whenever the input
device is deterministic. The main reason for the remaining summation is the fact
that we do not know how to define sums like ω(x1, . . . , xk) + ω′(x1, . . . , xk) for
ω, ω′ ∈ Ωk. Hence, we finally consider tst, because there we know more about
the operations of Ω.

Theorem 10. Let A be a completely idempotent semiring and let M1 be a tst
over A. There exists a wta M such that ‖M‖ = ‖M1‖.

The last theorem admits a trivial corollary.

Corollary 11. For every bottom-up tree transducer M1 there exists a wta M
such that ‖M‖ = ‖M1‖.

4 Pumping Lemmata

In this section we would like to demonstrate how to make use of the repre-
sentation theorem derived in the previous section (Theorem 9). Unfortunately,
very few results exist for weighted tree automata over arbitrary semirings (in
particular: non-commutative semirings). However, in [2] a pumping lemma for
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deterministic finite wta is presented and we would like to translate this result to
deterministic finite tst and deterministic finite DM-wta.

In this section, let A = (A,⊕,4) be a semiring and D = (D,+, Ω) be a DM-
monoid. Let Ld

Σ(A) be the class of deterministically recognizable tree series, i.e.,
for every L ∈ Ld

Σ(A) there exists a deterministic finite wta M = (I,Σ,A, F, μ)
such that L = ‖M‖. Similarly, let Td

Σ,Δ(A) be the class of deterministically com-
putable t-ts transformations, i.e., for every τ ∈ Td

Σ,Δ(A) there exists a determin-
istic finite tst M = (I,Σ,Δ,A, F, μ) such that τ = ‖M‖. Finally, let Ld

Σ(D) be
the class of deterministically recognizable DM-monoid tree series, i.e., for every
L ∈ Ld

Σ(D) there exists a deterministic finite DM-wta M = (I,Σ,D, F, μ) such
that L = ‖M‖.

Firstly, we state the original corollary of [2].

Corollary 12 (Corollary 5.8 of [2]). Let L ∈ Ld
Σ(A). There exists m ∈ IN

such that for every tree t ∈ supp(L) with height(t) ≥ m + 1 there exist trees
C,C ′ ∈ T̂Σ(X1) and t′ ∈ TΣ, and semiring elements a, a′, b, b′, d ∈ A such that

– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C �= x1, and
– (L,C ′[Cn[t′]]) = a′ 4 an 4 d4 bn 4 b for every n ∈ IN.

We have already noted that the determinism and finiteness properties are
preserved by all our constructions, so given a deterministic finite DM-wta M1,
we can construct a deterministic finite wta M such that

∑
‖M‖ = ‖M1‖ (cf.

Theorem 9). Since the addition of the semiring is irrelevant for deterministic de-
vices, we actually obtain ‖M‖ = ‖M1‖. Now we can apply the pumping lemma
(Corollary 12) to this wta and thereby obtain a pumping lemma for tree series
of Ld

Σ(D).

Theorem 13. Let L ∈ Ld
Σ(D) and Ω′ = Ω ∪ D. There exists m ∈ IN such

that for every t ∈ supp(L) with height(t) ≥ m + 1 there exist C,C ′ ∈ T̂Σ(X1),
t′ ∈ TΣ, and a, a′ ∈ T̂Ω′(X1), and d ∈ D such that

– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C �= x1, and
– (L,C ′[Cn[t′]]) = a′ ← an ← d for every n ∈ IN.

Proof. The statement follows from Corollary 5.8 of [2] and Theorem 9.

With the help of Proposition 5 we can also obtain a pumping lemma for
deterministic finite tst in the very same manner.

Theorem 14. Let τ ∈ Td
Σ,Δ(A) be a t-ts transformation. There exists m ∈ IN

such that for every tree t ∈ supp(T ) with height(t) ≥ m + 1 there exist trees
C,C ′ ∈ T̂Σ(X1), t′ ∈ TΣ, and a, a′ ∈ A〈〈TΔ(X1)〉〉, and c ∈ A〈〈TΔ〉〉 such that
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– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C �= x1, and
– (τ, C ′[Cn[t′]]) = a′ ← an ← c for every n ∈ IN.

Proof. The statement is an immediate consequence of Proposition 5 and Theo-
rem 13.

Finally, if we instantiate the previous theorem to the Boolean semiring, then
we obtain the classical pumping lemma for deterministic bottom-up tree trans-
ducers (cf. [6]).

Acknowledgements. The author would like to thank the anonymous referees for
their valuable suggestions, which improved the readability of the paper.
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Abstract. A fragment of linear time temporal logic (LTL) is presented.
It is proved that the satisfiability problem for this fragment is NP-
complete. The fragment is larger than previously known NP-complete
fragments. It is obtained by prohibiting the use of until operator and
requiring to use only next operators indexed by a letter.

1 Introduction

Linear time temporal logic (LTL) is a well-studied and broadly used formalism
for reasoning about events in time. It is equivalent to first-order logic over finite
and infinite words [6]. The operators of the logic correspond to well-known semi-
groups which gives a starting point of the successful classification research [13].
LTL is used to formulate properties of finite or infinite words. Such a formal-
ization permits to do model-checking – verify if the given model has the given
property. It turns out that, for LTL and its fragments, in almost all cases the
model-checking problem is equivalent to a satisfiability-checking problem. This
is why the satisfiability problem for LTL and its fragments is so well-studied.
It is well-known that the problem for whole LTL is Pspace-complete [11]. It
is known also [11] that the fragment using only the “sometimes in the future”
modality, denoted F , as well as the fragment using only the “next” modality, de-
noted X, have NP-complete satisfiability problems. Nevertheless, the fragment
when both F and X are allowed is Pspace-complete. This is a decidable frag-
ment of LTL [1, 13]. We show that restricting the next operator X to operators
Xa (a ∈ Σ) that enforce the current letter to be a, we get a fragment with the
satisfiability problem in NP.

Thus, this paper shows that the Pspace-completeness of the F +X fragment
is in some sense an accident due to some syntactic conventions. A very common
approach to formalization of LTL is to have propositions in the logic and to
consider a model to be a sequence of valuations of propositions. Another ap-
proach is to consider models to be words over a given alphabet and to have next
modalities indexed by the letters, i.e. Xaϕ says that the first letter of the model
is a and after cutting a the rest of the model satisfies ϕ. Of course it is very easy
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to translate between the two conventions but the fragments that look natural in
one convention do not necessary do so in the other. In particular consider the
next operator X. Having operators Xa we can express X as Xϕ ≡

∨
a∈Σ Xaϕ,

where Σ is the alphabet. An important point about this translation is that it in-
duces an exponential blow-up. We show that it is having X as a primitive in the
language that is the source of Pspace-hardness. We prove that the fragment of
LTL without until operator and usingXa operators instead of X is NP-complete.

Related Work. We have mentioned already above the classic results on Pspace-
completeness of the full logic and NP-completeness of the fragments only with
F and only with X, [11]. Matched with the Pspace-completeness of F +X frag-
ment, these results were considered sharp and the later work has concentrated
mostly on extensions of LTL [7, 4, 3, 8]. Nevertheless the question about the frag-
ment considered here was posed by the second author [12]. Recently the search
of “easy” fragments of LTL has regained some interest [5, 2, 10]. The main mo-
tivation is to understand why the model-checkers (or the satisfiability-checkers)
behave relatively well in practice despite the Pspace lower bound. The frag-
ments considered in recent papers put restrictions on the nesting of operators
and on the number of propositions used [2].

2 Preliminaries

We will use Σ for a finite alphabet, the letters of which will be denoted by
a, b, c, . . . As usual Σ∗ denotes the set of finite and Σω the set of infinite words
over Σ. We use u, v, w, . . . to range over words.

Let A ⊆ Σ∗ be a finite set of words. The size of A is the sum of the lengths
|v| of all v ∈ A. We write Σ≤n for the set of words of length ≤ n.

Definition 1. The set of subLTL formulas over an alphabet Σ is defined by the
following grammar:

ϕ ::= tt | ff | Xbϕ | Fϕ | Gϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

where subscript b ranges over Σ and Xb, F and G are called “next”, “finally”
and “globally” modalities.

For a non-empty word v = a1 · · · ak we write for short Xvφ instead of the
formula Xa1 . . . Xak

ϕ.

The models are infinite words v ∈ Σω. The semantic is standard so we recall
just the most important clauses:

– v |= Xaϕ if v can be factorized as av′ and v′ |= ϕ;
– v |= Fϕ if there is a factorization uw of v, where u ∈ Σ∗, such that w |= ϕ;
– v |= Gϕ if for all factorizations uw of v with u ∈ Σ∗, we have w |= ϕ.

Observe that there is no negation in the syntax. This is because we can
define the negation of a formula using the equivalence rules ¬(Fϕ) = G(¬ϕ)
and ¬(Xaϕ) = Xa(¬ϕ) ∨

∨
b �=a Xbtt. Note that these rules increase the size of

the formula by a linear factor only.
In this paper we prove:
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Theorem 1. The satisfiability problem for subLTL is NP-complete.

Let us compare subLTL with linear time temporal logic with propositional
constants, that we call PTL here. In PTL instead of an alphabet we have a
set of propositional constants Prop = {P,Q, . . . }. The formulas are built from
propositions and their negations using the modalities X, F and G. There is also
an until operator but we do not need it for our discussion here. The models are
infinite sequences of valuations of propositions. When interested in satisfiability
of a given formula ϕ one can restrict to the set of propositions that appear in
the formula, call it Propϕ. This way a model can be coded as a word over the
finite alphabet Δ = 2Propϕ . Given this, the semantics is the best explained by
the translation to LTL:

– P is translated to
∨
{Xatt | a ∈ Δ, P true in a} (recall that letters are

valuations),
– Xϕ =

∨
a∈Δ Xaϕ

The rest of the clauses being identities.
Having definitions of both subLTL and PTL we can make the comparisons.

First, observe that the fragment of PTL without X corresponds to the fragment
of subLTL where after Xa we can put only tt. Next, observe that the translation
of Xϕ induces an exponential blowup. For example a formula Xntt (X n-times
followed by tt) is translated to a formula of exponential size. Finally, observe
that subLTL can express more properties than PTL without X. A simple exam-
ple is G(Xatt ⇒ Xabtt) which states that after each a there is b. This property
is not expressible in PTL without X if we have more than two letters. Another
interesting formula is G(Xabtt ∨Xbatt). This formula has only the words (ab)ω

and (ba)ω as models. This indicates that constructing a model for a subLTL for-
mula may require a bit of combinatorics on words as the phenomena of interplay
between different prefixes start to occur.

3 The Lower-Bound

Showing NP-hardness of the satisfiability problem for subLTL is quite straight-
forward.

We reduce SAT. Given a propositional formula α over variables x1, . . . , xn

we consider models over the letters b, a1, . . . , an were b will be used to fill the
“empty spaces”. A valuation of the variables x1, . . . , xn will be encoded by a
word in such a way that xi is true iff ai occurs in the word. Let ϕα be a formula
obtained by replacing each occurrence of xi in α by FXai

tt. Then there is a
valuation satisfying α iff there is a word which is a model for ϕα.

In this reduction the alphabet is not fixed. Nevertheless it is quite straight-
forward to modify the reduction so that it works also for a two letter alphabet.
For example, one can code each letter ai as a word baib. We omit the details.
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4 The Upper-Bound

To show that the satisfiability problem for subLTL is in NP we will prove the
small model property. The algorithm will be then to guess the model, of the
form uvω for u, v ∈ Σ∗ and to check if the formula holds. This latter task can
be done in polynomial time [11]. As a digression let us mention that the precise
complexity of this problem is not known [9].

Hence, our goal in this section is the following theorem:

Theorem 2. Every satisfiable formula ϕ of subLTL has a model of the form
uvω with |u| + |v| polynomial in the size of ϕ.

The proof will be split into two subsections. In the first we will consider
periodic words, i.e., ones of the form vω. We will show that if ϕ has a model
vω then there is short word w such that wω is also a model of ϕ. In the second
subsection we consider the case of ultimately periodic words, i.e., of the form
uvω and show how to shorten u. Putting the two together we will obtain a small
model for any satisfiable formula.

4.1 Periodic Words

We will first characterize the models of a subLTL formula that are periodic
infinite words, i.e., words of the form vω for some v ∈ Σ∗.

Let Swords(w) be the set of finite factors of w.

Definition 2. For A,B ⊆ Σ∗ and p ∈ Σ∗ we say that w ∈ Σ∗ ∪ Σω is an
(A,B, p)-word if

– p is a prefix of w,
– A ⊆ Swords(w),
– B ∩ Swords(w) = ∅.

For the proof of the proposition below it is important to note that for
any word v ∈ Σ∗ and any factorization v = xy we have that Swords(vω) =
Swords((yx)ω).

Proposition 1. Let φ be a subLTL formula of size n. Then there exists a set
T (φ) of triples (A,B, p), where A,B ⊆ Σ≤n are of polynomial size in n and
p ∈ Σ≤n, such that for any word v ∈ Σ∗:

vω |= φ iff vω is an (A,B, p)-word for some (A,B, p) ∈ T (φ).

Proof. We show the assertion by induction on the given formula φ.

1. We have T (tt) = {(∅, ∅, λ)} and T (ff) = {(∅, Σ, λ)}.
2. Suppose φ = φ1∧φ2. We define T (φ) as the set of triples (A,B, p) constructed

as follows. For every two triples (A1, B1, p1) ∈ T (φ1) and (A2, B2, p2) ∈
T (φ2) with p1 ≤ p2 (p2 ≤ p1 respectively) we let A = A1 ∪A2, B = B1 ∪B2
and p = p2 (p = p1 respectively). It is easy to check that vω is a (Ai, Bi, pi)-
word for i = 1, 2 if and only if it is a (A,B, p)-word.
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3. Suppose φ = Xaψ. We define T (φ) = {(A,B, ap) | (A,B, p) ∈ T (ψ)}. We
have vω |= φ if and only if v = aw and (wa)ω |= ψ. By induction, this
happens if and only if (wa)ω is an (A,B, p)-word for some (A,B, p) ∈ T (ψ).
But this is the case if and only if (aw)ω is an (A,B, ap)-word.

4. Suppose φ = Fψ. We define T (φ) = {(A ∪ {p}, B, λ) | (A,B, p) ∈ T (ψ)}.
We have vω |= Fψ if and only if there exists some factorization v = wx with
(xw)ω |= ψ. By induction hypothesis this is equivalent to (xw)ω being an
(A,B, p)-word for some triple (A,B, p) ∈ T (ψ). It is now easy to see that
vω is an (A ∪ {p}, B, λ)-word iff there is a factorization xw of v with (wx)ω

being an (A,B, p)-word.
5. Let φ = Gψ. For each subset {(A0, B0, p0), . . . , (Ak, Bk, pk)} ⊆ T (ψ) with a

distinguished element (A0, B0, p0) we add the tuple (A,B, p0) to T (φ) where

A =
⋃

i=0,...,k

Ai, B =
⋃

i=0,...,k

Bi ∪ Y

and Y is the set of minimal words that are neither prefixes nor contain as
a prefix any of the words p0, . . . , pk. It is easy to see that Y is of the size
polynomial in n. A word belongs to Y if it is of the form va with v a prefix
of one of the words p0, . . . , pn and va neither a prefix of any of these words
nor containing any of them.
Suppose that vω |= Gψ. For every factorization xw of v we know, by the in-
duction hypothesis, that (wx)ω is a (Aw, Bw, pw)-word for some (Aw, Bw, pw)
in T (ψ). Let (A,B, pv) ∈ T (φ) be the triple constructed as above from the
set {(Aw, Bw, pw) | w suffix of v}. A direct verification shows that vω is a
(A,B, pv)-word. For example, let us show that Swords(vω)∩B = ∅. Directly
from the definition we have that Swords(vω) ∩ Bw for every w a suffix of
v. For the set Y defined as above we have Swords(vω) ∩ Y = ∅ because all
suffixes of vω have some pw as a prefix.
For the opposite direction suppose that v is an (A,B, p)-word constructed
from some set {(A0, B0, p0), . . . , (Ak, Bk, pk)} ⊆ T (ψ). Take any factoriza-
tion xw of v. We want to show that (wx)ω |= ψ. Because of the set Y , as
defined above, the word (wx)ω has some pi as a prefix. From the definition
we know that Ai ⊆ A and Bi ⊆ B. Hence (wx)ω is a (Ai, Bi, pi)-word and
consequently (wx)ω |= ψ.

�

Example 1. Consider the formula φ = Gψ, where ψ = Xabtt ∨ Xbatt and Σ =
{a, b}. We have T (ψ) = {(∅, ∅, ab), (∅, ∅, ba)}. The construction above yields
T (φ) = {(∅, {b, aa}, ab), (∅, {a, bb}, ba), (∅, {aa, bb}, ab), (∅, {aa, bb}, ba)}. Clearly,
only for the last two triples of T (φ) there can be a solution.

The next two lemmas show that finite (periodic, respectively.) (A,B, p)-words
can be chosen of polynomial length.

Lemma 1. Let A,B ⊆ Σ∗ and p ∈ Σ∗. If there is a finite (A,B, p)-word then
there is one of size polynomial in the sizes of A, B and p.



An NP-Complete Fragment of LTL 339

Proof. We construct a (deterministic) finite automaton A accepting (A,B, p)-
words. Then we show that it accepts a short word.

As a preparation observe that we may assume that no word in A is a factor
of some other word in A; if it is the case then we simply delete the smaller one.
Similarly for B but here we can delete the bigger one.

The states of A will be triples (u, v, r) where u is a prefix of a word in A,
v is a prefix of a word in B and r is a prefix of p. Intuitively such a state will
say that u and v are suffixes of the word being read and they are the longest
possible suffixes for the words in A and B respectively. The last component r is
used for testing that the word starts with p. The initial state will be (λ, λ, λ).

The transitions of A are deterministic. We have

(u, v, r) a→ (u′, v′, r′)

when

– either u′ = ua, or if ua is not a prefix of a word in A then u′ is the longest
suffix of ua that is a prefix of word from A.

– for v′ we have exactly the same rule but with respect to B.
– either r = p = r′, or r′ = ra if ra is a prefix of p.

A state (u, v, r) is rejecting if v ∈ B. It is a u-state if its first component is u.
Our first claim is that a word w is an (A,B, p)-word iff A has a run on this

word that does not visit a rejecting state, passes through a u-state for every
u ∈ A and ends in a state where the last component is p (called a p-state). This
follows from the observation that if there is a B-factor v in w then after reading
the last letter of v the automaton A enters in the rejecting state. If u ∈ A is a
factor of w, then after reading u the state of A is a u-state.

It remains to see that there is a short (A,B, p)-word if there is one at all.
Consider an (A,B, p)-word u and an accepting run ρ = (s0, s1, . . . , sm) of A on
u = a1 · · · am. Thus, sm is p-state and for each u ∈ A there is some position
j such that sj is a u-state. Let us fix for each u ∈ A such a position j(u) and
let J = {j(u) | u ∈ A}. We can delete now any loop contained between two
consecutive positions in J , and the run obtained is still accepting. The length of
the run is at most O(|A||A|), hence polynomial in |A|, |B|, |p|.

�

Lemma 2. If there is a periodic (A,B, p)-word then there is one of the form sω

with |s| polynomial in the sizes of A, B and p.

Proof. The construction is as in the previous lemma but now we need to start
the automaton in some state of the form (u, v, λ) and to require that it reaches
the state (u, v, p).

Suppose that we have a run from (u, v, λ) to (u, v, p) for some u, v, and let
s be the word defining this run. Then s defines also a run from (u, v, p) back to
itself, thus sω is the desired periodic (A,B, p)-word. By the same argument as
in the lemma before we can also see that there is always a run of polynomial
length, if any. For the other direction, suppose that sω is a periodic (A,B, p)-
word. We can consider the run of A on this word starting in (λ, λ, λ). Since sω
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is an (A,B, p)-word, this run never blocks. Hence, there must be two indices
i < j such that after reading si and sj the automaton is in the same state, say
(u, v, p). But then, there is a run of automaton A from (u, v, λ) to (u, v, p) on
sj−i. �

4.2 Ultimately Periodic Words

We turn now to the case where the model of φ is ultimately periodic, i.e., of the
form uvω for some u, v ∈ Σ∗. For the rest of the section, n denotes the length
of the given formula ϕ.

Lemma 3. Any subLTL formula φ using only the operators Xa (a ∈ Σ) is
equivalent to a disjunction of the form

∨
v∈V Xvtt, for some set V ⊆ Σ≤|φ| of

at most |φ| words.

Proof. We show the assertion by induction on the given formula φ. For φ =
Xaψ we suppose that ψ is equivalent to

∨
v∈V Xvtt, hence φ is equivalent to∨

v∈V ′ Xvtt for V ′ = aV . Let now φi be equivalent to ∨v∈ViXvtt for i = 1, 2.
Then φ1 ∧φ2 is equivalent to

∨
v∈V Xvtt, for V defined as follows: a word v ∈ Vi

belongs to V if and only if there exists v′ ∈ Vj , j �= i, such that v′ ≤ v. �

An F -formula is a formula that begins with F . Similarly for X and G-
formulas. The set El(φ) of elementary subformulas of φ is the set of those sub-
formulas of ϕ that are either F - or G-formulas.

For any word we write w[i, j] for the factor ai . . . aj . For an infinite word
w = a1a2 . . . we write w[j,∞] for the suffix ajaj+1 . . . We use w(i) to denote ai,
the i-th letter ai.

For the rest of the section we fix a model uvω of a formula ϕ. With each
position i ≤ |u| in the word uvω we associate the set of subformulas:

Si = {ψ ∈ El(ϕ) | u[i, |u|] vω |= ψ}

Remark 1. If a formula Gα is in Si then it is in all Sj for j ≥ i. Analogously, if
Fα ∈ Si then Fα ∈ Sj for all j ≤ i.

A position i ≤ |u| is called important if there is a formula Fα in Si \ Si+1 or
there is a formula Gα in Si+1 \ Si. Let VIP be the set of important positions in
u. Clearly the number of important positions is bounded by n = |ϕ|.

We will show how to reduce distances between consecutive important posi-
tions, in order to obtain a short word u. From now on we fix two consecutive
important positions i, j ∈ VIP. This means that Si+1 = · · · = Sj contain the
same F - and G-subformulas and Si �= Si+1.

For a subformula ψ of ϕ let ψ̂ be a formula obtained by substituting tt
for every F - or G-subformula of ψ appearing in Sj and ff for all other F or G
subformulas. By Lemma 3, for every subformula ψ there exists a polynomial-size
set of words Vψ ⊆ Σ≤n such that ψ̂ is

∨
v∈Vψ

Xvtt (in consequence, if Vψ = ∅
then ψ̂ = ff and if Vψ = {λ} then ψ̂ = tt).
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Example 2. ̂XaG(Xbtt) is Xatt or Xaff depending on G(Xbtt) being in Sj or not.
Moreover ̂G(XaG(Xbtt)) is just tt or ff. (Both hats range over whole formulas).

Our goal is to replace u[i+ 1, j] in uvω by a short word so that the result is
still a model of ϕ. In order to do this we will use (Y, p, s)-words, that we define
in the following. Let Y ⊆ Σ∗ and p, s ∈ Σ∗. A finite word w is a (Y, p, s)-word, if
it starts with p, finishes with s and for all positions 1 ≤ k ≤ |w| − |s|, the suffix
w[k, |w|] starts with a word from Y .

Lemma 4. If there exists some (Y, p, s) word, then there exists some of length
polynomial in the sizes of Y, p, s.

Proof. Consider some (Y, p, s)-word w and a position k ≤ |w|−|s|. By definition,
there exists some l > k such that w[k, l] ∈ Y . With k we associate the position
r(k) defined by r(k) = max{l′ ≥ l | ∃k′ ≤ k : w[k′, l′] ∈ Y }. That is, r(k) is
the rightmost end of a word in Y that begins at the left of k. By definition,
w[l+1, r(k)] is a suffix (possibly empty) of a word in Y . Thus, there are at most
|Y |2 different words w[k, r(k)].

Suppose now that |p| < k < k′ ≤ |w| − |s| are such that w[k, r(k)] =
w[k′, r(k′)]. Obviously, the word w[1, k]w[k′ + 1, |w|] obtained by cutting out
w[k + 1, k′] is still a (Y, p, s)-word. Thus, by the above remark we know that
there exists a (Y, p, s)-word of length at most |Y |2 + |ps|. �

For each Gα ∈ Sj let Vα be the set of words obtained by Lemma 3 such
that α̂ =

∨
v∈Vα

Xvtt. Applying again Lemma 3 we obtain a set Y such that∧
Gα∈Sj

α̂ =
∨

v∈Y Xvtt. Note that Y is of polynomial size and contains only
words of length at most n, since Y ⊆

⋃
Gα∈Sj

Vα. Moreover, let p = u[i+1, i+n],
s = u[j − n+ 1, j] be the prefix and suffix, respectively., of length n of u[i, j].

The next lemma follows immediately from the definition of Y :

Lemma 5. Let i, j ∈ VIP be consecutive important positions with j − i > n,
and let Y, p, s be defined as above. Then the word u[i + 1, j] is a (Y, p, s)-word.
Moreover, each (Y, p, s)-word w starts with u[i+1, i+n], finishes with u[j−n+1, j]
and for all k ≤ |w| − n the word w[k, |w|] has a word from Vα as a prefix for all
subformulas Gα ∈ Sj.

Our goal is to show that wu[j + 1, |u|]vω |= Si+1 for any (Y, p, s)-word w, as
this will imply u[1, i]wu[j + 1, |u|]vω |= ϕ. To do this we will need a definition
and several lemmas. Consider a formula α and let

γα =
∧

{δ ∈ Si+1 | δ is a F - or G-subformula of α}

Hence γα is the conjunction of all F - andG-formulas that appear in Si+1 = Sj

and that are subformulas of α. By Lemma 3 the formula α̂ is equivalent to∨
r∈R Xrtt. We define α̃ to be the formula

∨
r∈R

∧
s≤r Xsγα. The definition of α̃

is important because it gives an underapproximation of α that is easy to work
with.
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Lemma 6. If α is a subformula of the initial formula then α̃ ⇒ α holds.

Proof. By induction on α:
If α is an F - or G-formula then α̂ is either tt or ff and α̃ is either γα or ff,

respectively. We have that α̃ ⇒ α in this case.
If α = Xaβ then γα ⇒ γβ . Let β̂ =

∨
r∈R Xrtt, then β̃ =

∨
r∈R

∧
s≤r Xsγβ .

We have that α̃ =
∨

ar∈aR

∧
s≤ar Xsγα =

∨
r∈R(γα ∧

∧
s≤r XaXsγα) = γα ∧

Xa(
∨

r∈R

∧
s≤r Xsγα) ⇒ Xa(

∨
r∈R

∧
s≤r Xsγβ) = Xaβ̃ ⇒ Xaβ = α.

For α = β0 ∨ β1 the argument is straightforward. It remains to consider the
case when α is of the form β0 ∧ β1. We have that β̂0 is of the form

∨
r∈R0

Xrtt

and β̂1 is
∨

r∈R1
Xrtt. Now by construction β̂0 ∧ β1 is

∨
s∈S Xstt where s ∈ S

if there is i ∈ {0, 1} with s ∈ Ri and some prefix of s in R1−i. We have by
definition that β̃0 ∧ β1 is

∨
s∈S

∧
w≤s Xwγα. It is easy to check that this implies∨

s∈Ri

∧
w≤s Xwγα for i ∈ {0, 1}, hence also β̃0 ∧ β̃1. �

We have now all ingredients to show that wu[j + 1, |u|]vω |= Si+1 for any
(Y, p, s)-word w. To shorten the notation we will write z for the suffix u[j +
1, |u|]vω. The proof goes through two lemmas because we need to consider G-
formulas separately.

Lemma 7. Let w be a (Y, p, s)-word. For every G-formula Gα ∈ Si+1 and every
non-empty suffix w′ of w we have w′z |= Gα.

Proof. The proof is by induction on the size of Gα. Take a formula Gα ∈ Si+1
and any suffix w′ of w. We want to show that w′z |= α. Since z |= Gα, this
suffices for showing that w′z |= Gα.

If |w′| ≤ n then w′ is a suffix of u[j − n + 1, j] and we have w′z |= Gα by
definition of Si+1. Hence also w′z |= α.

If |w′| > n then we know by Lemma 5 that w′ starts with a word from Vα,
say r ∈ Vα. We will show that w′z |= α̃. Consider now the conjunct

∧
s≤r Xsγα

of α̃, where γα is, as before, the conjunction of all F and G-subformulas of α
from Si+1. We know that |w′| > n and |r| ≤ n, hence we can use the induction
hypothesis and we obtain that w′z |=

∧
s≤r Xsγα. But then we have w′z |= α̃

which implies w′z |= α by Lemma 6. �

Lemma 8. If w is a (Y, p, s)-word then wz |= Si+1.

Proof. For formulas Fα ∈ Si+1 we know that u(j)z |= Sj = Si+1 and we are
done as w ends with the letter u(j). The case of G-formulas follows from the
previous lemma.

It remains to consider an X-formula α. The first observation is that wz |= α̂.
This is because u[i+ 1, j]z |= α, the size of α is not bigger than n, and w starts
with u[i+1, i+n]. Now, by the same reasoning as in the previous lemma we get
that wz |= α̃. Finally, by Lemma 6 we have wz |= α. �



An NP-Complete Fragment of LTL 343

We obtain:

Proposition 2. If uvω |= ϕ and i, j ∈ VIP are successive important positions
then there is a word w of size polynomial in n = |ϕ| such that u[1, i]w u[j +
1, |u|]vω |= ϕ.

Proof. From Lemma 8 we know that wz |= Si+1. By induction on k = i, . . . , 1
it is easy to see that u[k, i]w [j + 1, |u|]vω |= Sk. Lemma 4 gives the bound on
the length of w. �

Using Proposition 2 repetitively we can shorten the size of u. From the pre-
vious subsection, Proposition 1 and Lemma 2, we know that we can shorten v.
This proves the small model theorem, Theorem 2.

5 Conclusions

We have show the small model property for subLTL which implies that the satis-
fiability problem for the logic is NP-complete. This indicates that the temporal
logic formalism based on word models is more subtle than the one based on
propositions and on sequences of valuations. This also indicates that the X op-
erator of LTL may be a source of complexity. On the other hand it seems that Xa

operators are easier algorithmically, but the proofs become much more involved
because some combinatorics on words becomes necessary. As further work we
would like to investigate global trace logics with Xa instead of X. The hope be-
ing to have a reasonable such logic with the complexity lower than Expspace.
The other question is the complexity of the model-checking problem for subLTL
with respect to a single path uvω. This question has been asked for general LTL
in [9]. For general LTL it can be solved in polynomial time, but no good lower
bound is known.
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Abstract. The main result of this paper is the reduction of PCP(n)
to the vector reachability problem for a matrix semigroup generated by
n 4 × 4 integral matrices. It follows that the vector reachability prob-
lem is undecidable for a semigroup generated by 7 integral matrices of
dimension 4. The question whether the vector reachability problem is
decidable for n=2 and n=3 remains open. Also we show that proposed
technique can be applied to Post’s tag-systems. As a result we define new
classes of counter automata that lie on the border between decidability
and undecidability.

1 Introduction

In this paper we show the connection between decision problems for Post systems
and the reachability problems for matrix semigroups and counter automata.

We start from the vector reachability problem for a matrix semigroup, which
is a generalisation of the orbit problem [12]. The vector reachability problem is
formulated as follows: “Let S be a given finitely generated semigroup of n× n
matrices from Qn×n and vectors x̄,ȳ from Qn. Decide whether there is a matrix
M ∈ S such that M · x̄ = ȳ.”

In fact, the problem has close relation to the membership problem in matrix
semigroups [1, 7, 14] and the reachability in linear iterative maps. It is equivalent
to the following reachability problem for non-deterministic linear maps: ”Given
two vectors u and v in n-dimensional vector space over Q and a set A of linear
transformations. Determine whether exists a sequence of transformations from
A such that maps v to u”. In algebraic terms the vector reachability problem
can be expressed as a problem of determining whether it is possible to get a
vector u by an action of matrix semigroup on the initial vector v.

In case where a semigroup generated by one matrix the vector reachability is
decidable in polynomial time [12]. It is shown in [14] that the vector reachabil-
ity problem is decidable for the case of row-monomial matrix semigroups over
semigroup S, where S is an arbitrary finitely generated commutative matrix
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semigroup over an algebraic number field F . In particular the vector reachabil-
ity problem is decidable for a case of row-monomial matrix semigroups over Q
or C. In general case the problem is also decidable for n = 1 since it can be
reduced to the solution of the system of linear Diophantine equations. Since the
membership problem for 3× 3 matrix semigroup is undecidable it is also easy to
see that the vector reachability problem is undecidable for any n ≥ 9 by reduc-
tion of membership problem of dimension 3 to the vector reachability problem
of dimension 9 [7].

As a main result of this paper we prove that the vector reachability problem
is undecidable for any n ≥ 4. In particular the undecidability result is based
on the reduction the Post correspondence problem to the 4-dimensional vector
reachability problem. The question whether the problem is decidable for n=2
and n=3 is still open.

As an extension of proposed reduction we apply a similar technique to the
Post’s tag-systems to show their connection to reachability problems for counter
automata and to identify some classes of automata with decidable and undecid-
able reachability problems.

This paper is organised as follows. Next section contains preliminaries. In the
Section 3 we show a matrix interpretation of Post correspondence problem and
the main result. Another application of the developed technique is presented in
Section 4, where we convert tag-systems to four counter automata. The paper
ends with some conclusions and open problems.

2 Preliminaries

In what follows we use traditional denotations N,Z,Q and Q+ for the sets of
naturals (non-negative integers), integers, rationals and non-negative rationals,
respectively. A semigroup is a pair (S, ·), where S is a set and · is an associative
binary operation on S. A semigroup (S, ·) is generated by a set A of its elements
iff every element of S is a finite product ai1 · ai2 · . . . · aik

where aij
∈ A. The

set of n× n matrices over rationals (integers) is denoted by Qn×n (Zn×n). It is
clear that the identity element for a semigroup (Qn×n, ·) or for (Zn×n, ·) is the
identity matrix that we denote by En (or E).

We denote an empty word by ε. The concatenation of two strings w and v is
a string obtained by appending the symbols of v to the right end of w, that is, if
w = a1a2 . . . an and v = b1b2 . . . bn then the concatenation of w and v, denoted
by w · v or wv, is a1a2 . . . anb1b2 . . . bn. The reverse of a string is obtained by
writing the symbols in reverse order; if w is a string as shown above, then its
reverse w−1 is an . . . a2a1.

2.1 The Stern-Brocot Tree

The Stern-Brocot tree is an elegant way for constructing the set of all nonnegative
fractions m

n where m and n are relatively prime [8].
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Take two rational numbers, a
b and c

d , and insert between them a third value,
called the mediant, equal to a+c

b+d . Now with three numbers in hand, construct
mediant between the first and second and between second and third, so that the
next level of the tree has five numbers.

The canonical version of the Stern-Brocot tree starts with two irreducible
fractions 0

1 , 1
0 representing zero and infinity. Actually 0

1 is a fraction while 1
0 is

not. However, we use them to describe a way to get all possible positive fractions
arranged in a binary tree form as illustrated on Figure 1.

1

1

0

1

1

0

1

2

2

1

1

3

2

3

3

2

3

1

2

5

3

5

3

4

4

3

5

3

5

2

1

4

4

1

Fig. 1. The Stern-Brocot Tree

So, for example, from 0
1 and 1

0 we get 1
1 . The mediant of 0

1 and 1
1 is 1

2 while
the mediant of 1

1 and 1
0 is 2

1 . On the next stage of the construction, we form four
new fractions: 1

3 from 0
1 and 1

2 , 2
3 from 1

2 and 1
1 , 3

2 from 1
1 and 2

1 , and, finally,
the mediant of 2

1 and 1
0 which is 3

1 . Continuing this way we get an infinite tree
known as the Stern-Brocot tree 1.

If we specify the position of a fraction in the tree as a path consisting of
L(eft) an R(ight) moves along the tree starting from the top (fraction ), and also
define matrices

ML =
(

1 1
0 1

)
,MR =

(
1 0
1 1

)
then product of the matrices corresponding to the path (or binary word) is matrix(
n n′

m m′

)
whose entries are numerators and denominators of parent fractions m

n

and m′
n′ . For example, the path leading to fraction 3

5 is LRL. The corresponding
matrix product is

ML ×MR ×ML =
(

1 1
0 1

)
×
(

1 0
1 1

)
×
(

1 1
0 1

)
=

(
2 3
1 2

)
and the parents of 3

5 are 1
2 and 2

3 .

1 It was discovered independently by the German mathematician Moriz Stern (1858)
and by the French clock maker Achille Brocot (1860).
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Let us consider a binary word w=w1 · . . . · wn, that corresponds to some
path in the Stern-Brocot tree. In case of matrix representation the empty word
corresponds to the identity matrix and the binary word w corresponds to a
matrix Mw=Mw1 × . . .×Mwn .

So let w be a binary word and Mw be its matrix representation. For example,
in order to append character L to the word w (right concatenation) we have to
multiply matrix Mw by ML from the right, so the word w′ = w · L corresponds
to Mw ×ML. Similarly we can add character R to the head of the word w (left
concatenation), so the word w′ = R · w corresponds to MR ×Mw.

The left and the right contractions can be expressed using inverse matrices:

M−1
L =

(
1 −1
0 1

)
,M−1

R =
(

1 0
−1 1

)
.

Let the head character of the word w′ = R · w be R. We can delete a head
character R if we multiply M−1

R by M ′
w then M−1

R ×Mw′ = M−1
R ×MR ×Mw =

Mw. In order to delete the tail character L of the word w′ = w · L we multiply
Mw′ by M−1

L , so Mw′ ×M−1
L = Mw ×ML ×M−1

L = Mw.

2.2 Two Mappings Between Words and Matrices

Now we derive two mappings ψ and φ from the Stern-Brocot number system.
First, let us consider the mapping ψ between {L,R}∗ and 2 × 2 matrices:

ψ : ε 
→
(

1 0
0 1

)
= E ψ : L 
→

(
1 1
0 1

)
= ML ψ : R 
→

(
1 0
1 1

)
= MR

ψ : w1 · . . . · wr 
→ Mw1 × . . .×Mwr
.

It follows from the properties of Stern-Brocot number system [8, 10] that the
mapping ψ is an isomorphism between {L,R}∗ and elements of matrix semigroup

generated by 2 × 2 matrices
(

1 1
0 1

)
and

(
1 0
1 1

)
. Since for every matrix with

nonzero determinant there is only one unique inverse matrix we can also define
a similar mapping φ. It can be defined using inverse matrices of the semigroup
generator. Mapping φ is also an isomorphism between {L,R}∗ and elements of
matrix semigroup generated by 2 × 2 matrices {M−1

L ,M−1
R } :

φ : ε 
→
(

1 0
0 1

)
= E φ : L 
→

(
1 −1
0 1

)
= M−1

L φ : R 
→
(

1 0
−1 1

)
= M−1

R

φ : w1 · . . . · wr 
→ M−1
w1

× . . .×M−1
wr
.

Note, that these two mappings from {L,R}∗ to matrices are injective, the
mappings from w ∈ {L,R}+ to w−1 ∈ {L,R}+ and from ψ(u) to φ(u−1) are
bijective (see Figure 2). There are many interesting properties of mappings φ
and ψ, but we state here only some of them that will be used in the paper.

Proposition 1. Given a word w ∈ {L,R}+ and w′ ∈ {L,R}∗.
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uψ(    )

u−1u−1 φ(      ) 

u

Fig. 2. Mappings between words and matrices

– Let ψ(w) =
(
e f
g h

)
then e, h > 0 and f, g ≥ 0;

– Let φ(w) =
(
a b
c d

)
then a, d > 0 and b, c ≤ 0;

– Let φ(w′ · L) =
(
a b
c d

)
then a ≤ |b|; Let φ(w′ ·R) =

(
a b
c d

)
then d ≤ |c|;

– Let ψ(R · w′) =
(
e f
g h

)
then e ≤ g; Let ψ(L · w′) =

(
e f
g h

)
then h ≤ f .

Proof. These properties hold for a case of four initial matrices φ(L), φ(R) , ψ(L),
ψ(R). The straightforward check of the matrix operations(

a b
c d

)
× φ(L),

(
a b
c d

)
× φ(R), ψ(L) ×

(
e f
g h

)
, ψ(R) ×

(
e f
g h

)
and easy induction on the length of words w and w′ shows the above properties.

Lemma 1. Given two words u, v ∈ X∗, u = v iff φ(u−1) = (ψ(v))−1.

Proof. ⇒ Let u = v then φ(u−1)×ψ(v) corresponds to a product of matrices of
even length of the form: An × . . .×A1 ×B1 × . . .×Bn where Ai ∈ {M−1

L ,M−1
R },

Bj ∈ {ML,MR}, i, j ∈ 1..n and for each symmetric pair of matrices Ak,Bk we
have Ak=B−1

k . ¿From it follows that An × . . .×A1 ×B1 × . . .×Bn =An × . . .×
A2 ×E×B2 × . . .×Bn = . . . = An ×E×Bn= E. The same idea of proof works
for ψ(v) × φ(u−1).

⇐ Let φ(u−1) = (ψ(v))−1 then ψ(v) is the unique inverse matrix for φ(u−1)
that should be equal to ψ(u), since φ(u−1) = (ψ(u))−1. By injectivity of mapping
from {L,R}∗ to matrices we have that u = v.

3 Post Correspondence Problem and Its Matrix
Interpretation

Post correspondence problem (in short, PCP) is formulated as follows: Given a fi-
nite alphabetX and a finite sequence of pairs of words inX∗: (u1, v1), . . . , (uk, vk).
Is there a finite sequence of indexes {ij} with {ij ∈ {1..k}}, such that

ui1 · . . . · uin
= vi1 · . . . · vin

?
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PCP(n) denotes the same problem with a sequence of n pairs. Without loss
of generality we assume that the alphabet X is binary.

Lemma 2. Given a finite binary alphabet X and a finite sequence of pairs of
words in X∗:

(u1, v1), . . . , (uk, vk)
and a finite sequence of indexes {ij} with {ij ∈ {1..k}}. The word u = ui1 ·. . .·uin

is equal to the word v = vi1 · . . . · vin if and only if

φ(u−1) × ψ(v) = E.

Proof. The proposition flollows from Lemma 1 and the fact that matrices ψ(w)
and φ(w) have the inverse matrices (elements) for any word w ∈ {L,R}∗.

Theorem 1. PCP(n) can be reduced to the vector reachability problem for a
semigroup generated by n 4 × 4-matrices.

Proof. Given a sequence of pairs of words in a binary alphabet A∗ = {L,R}:
(u1, v1), . . . , (un, vn). Let us construct the sequence of pairs of 2 × 2 matrices
using two mappings φ and ψ: (φ(u1), ψ(v1)), . . . , (φ(un), ψ(vn)).

Instead of equation u = v we would like to consider a concatenation of two
words u−1 · v that is a palindrome in case where u = v. Now we show a matrix
interpretation of this concatenation. We associate 2×2 matrix C with a word w
of the form u−1 · v. Initially C is an identity matrix corresponding to an empty
word. The extension of a word w by a new pair of words (ur, vr) (i.e. that gives
us w′ = u−1

r · w · vr) corresponds to the following matrix multiplication

Cw′ = Cu−1
r ·w·vr

= φ(u−1
r ) × Cw × ψ(vr) (1)

Let us rewrite the operation (1) in more details.(
c11w′ c12w′

c21w′ c22w′

)
=

(
u11 u12

u21 u22

)
×
(
c11w c12w

c21w c22w

)
×
(
v11 v12

v21 v22

)
(1′)

According to the Lemma 2 u = ui1 · . . . · uin = vi1 · . . . · vin = v for a finite
sequence of indexes {ij} with {ij ∈ {1..k}} if and only if φ(u−1)×ψ(v) is equal
to the identity matrix. So the question of the word equality can be reduced to
the problem of finding a sequence of pairwise matrix multiplications that gives
us the identity matrix.

Now we show that it is possible to avoid pairwise matrix multiplications by
increasing the dimension from 2 to 4. Actually we represent matrices Cw and
Cw′ from (1’) as 4 × 1 vectors and we unite every pair of matrices φ(u−1

r ) and
ψ(vr) into 4 × 4 joint matrix Mu−1

r ,vr
in the following way:⎛⎜⎜⎝

c11w′

c12w′

c21w′

c22w′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
u11 · v11 u11 · v21 u12 · v11 u12 · v21

u11 · v12 u11 · v22 u12 · v12 u12 · v22

u21 · v11 u21 · v21 u21 · v11 u22 · v21

u21 · v12 u21 · v22 u21 · v12 u22 · v22

⎞⎟⎟⎠
︸ ︷︷ ︸

M
u

−1
r ,vr

·

⎛⎜⎜⎝
c11w

c12w

c21w

c22w

⎞⎟⎟⎠ (2)
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Note that the equation (1’) is equivalent to the equation (2) in sense that the
expression for computing values of c11w′ , c12w′ , c21w′ and c22w′ in (2) coincide with the
corresponding values in (1’).

Thus for every pair of words (ur, vr) we construct the matrix Mu−1
r ,vr

. Now
PCP(n) can be reduced to the following vector reachability problem: Given a
matrix semigroup S generated by set of matrices {Mu−1

1 ,v1
, . . . ,Mu−1

n ,vn
}. Decide

whether there is a matrix M ∈ S such that⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ = M ·

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠.

It follows that if we can solve the above problem then we can solve the PCP(n).

Matiyasevich and Senizergues proved in [16] that the PCP(7) is undecidable.
Thus the following corollary of the Theorem 1 holds.

Corollary 1. The vector reachability problem is undecidable for a semigroup
generated by 7 matrices of dimension ≥ 4.

4 Post’s Tag-Systems

In this section we consider tag-systems, which is another interesting family of
systems proposed by Post. We plan to show that problems about tag systems
can be converted to the reachability problems in counter automata using the
techniques and two mappings ψ and φ presented in Sections 2 and 3.

A tag system is set of rules that specifies a fixed number of elements to be
removed from the beginning of a sequence and a set of elements to be appended
(”tagged” onto the end) based on the elements that were removed from the
beginning. Tag systems have a Turing machine-like halting problem for deciding
based on an arbitrarily given initial sequence whether repeated application of
the rules leads to a word of length smaller than the number of elements removed
from the beginning [17]. Wang [19] also considered a sort of opposite to a tag
system that he dubbed a lag system. Lag systems allow dependence on more
than just the first element, but remove only the first element. The tag and lag
systems can be represented as a communicating finite state machine [6] that
interacts with one FIFO channel.

4.1 CFSM with FIFO Channel

Definition 1. A Communication Finite State Machine (CFSM) is a finite tran-
sition system given by a 4-tuple C = (Q, q0, Σ, δ) where : Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is a finite alphabet, and δ is a transition
function such that δ ⊆ Q× ({+,−} ×Σ) ×Q.
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Note that C sees (+, a) and (−, a) as single symbols, which we henceforth
write as +a and −a respectively. The label −a denotes the emission of a in the
channel, and +a denotes the reception of a from the channel (Figure 3).

1 2

3

.  .  .

CFSM

FIFO channel
−L

−R

+L

+L

+R

Fig. 3. The communicating finite state machine model

The FIFO channel F , that contains the word w, can be changed only by two
modes: either to send another message a to the channel and then F will store
the word w · a, or if F contains a word w′ = a · w, to receive a message a, then
F will store a word w.

Now for any CFSM with a finite alphabet {L,R} we can construct an equiv-
alent model of a matrix transition system T with the same set of states and
transitions but with the different transition function and the set of labels. The
configuration of T will be represented by pair (M, s), where M is an integral

matrix
(
n n′

m m′

)
and s is a state such that s ∈ Q.

Note, that the operation of concatenation can be performed on any word.
However the contraction is a conditional operation since we need to know the
head or the tail character of a word in the FIFO channel. The Proposition 1
states that we can identify the head or the tail symbol of a word by checking
linear inequalities on matrix elements.

The transition system T can be constructed by changing the labels of CFSM
in compliance with the following rules:

− L : to substitute all labels −L by label ×ML

− R : to substitute all labels −L by label ×MR

+ L : to substitute all labels +L by guard (m < n) and label M−1
L ×

+ R : to substitute all labels +R by guard (m ≥ n) and label M−1
R ×

Here the label ×Ma denotes the right multiplication and corresponds to the
emission of a symbol a in the channel, and M−1

a × denotes the left multiplication
and corresponds to the reception of a from the channel.

The dynamics of the matrix transition system can be defined as follows. Let
the current configuration of T be a pair [M, s]. The transition system T can
reach the configuration [M × ML, s

′] from (M, s) by a transition ×ML or the
configuration [M ×MR, s

′] by a transition ×MR form state s to state s′.
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Also the transition system T could have transition with pre and post condi-
tions. For example the configuration [M−1

L ×M, s′] can be reached from (M, s)
by a transition n > m|M−1

L × from state s to state s′ if the precondition n > m
is true.

It is easy to see that we can go from the transition system T to counters
automaton by introducing the individual counters for each matrix element. Let us
rewrite matrix multiplications as a set of equations with four counters c1, c2, c3, c4
to keep track of values n, n′, m and m′, respectively .

×MR corresponds to
(
c1 c2
c3 c4

)
×
(

1 0
1 1

)
=

(
c1 + c2 c2
c3 + c4 c4

)
×ML corresponds to

(
c1 c2
c3 c4

)
×
(

1 1
0 1

)
=

(
c1 c1 + c2
c3 c3 + c4

)
M−1

R × corresponds to
(

1 0
−1 1

)
×
(
c1 c2
c3 c4

)
=

(
c1 c2

c3 − c1 c4 − c2

)
M−1

L × corresponds to
(

1 −1
0 1

)
×
(
c1 c2
c3 c4

)
=

(
c1 − c3 c2 − c4
c3 c4

)
Now we have finished reduction of CFSM with one FIFO into a special form

of counter automaton. Since the system of CFSM with FIFO can model a Turing
Machine [19, 9] the following theorem holds:

Theorem 2. Let A be a 4-counter automata where each transition is from the
set of unconditional jumps:{

c1 := c1 + c2
c3 := c3 + c4

;
{
c2 := c1 + c2
c4 := c3 + c4

or from the set of conditional jumps:

if (c1 > c3) then
{
c1 := c1 − c3
c2 := c2 − c4

;

if (c1 ≤ c3) then
{
c3 := c3 − c1
c4 := c4 − c2

.

Then A can simulate a Turing Machine.

The most popular universal model of computations is a model of two register
(counter) machine or so called Minsky machine. In that model we can indepen-
dently increment or decrement each counter and check them for zero. There are
many other models of 2 and 3 counter machines that are universal as well but
that have different basic operations such as reset (ci := 0), transfer (ci := ci+cj),
different tests like checking the equality or inequality between counters (ci = cj
or ci < cj).

For example the reachability problem for a model of two counter automata
with four operations such as {+1,−1, reset, transfer} is decidable. The similar
weak automaton (without testing for zero) with three counters have undecidable
reachability and boundedness problems [4]. The model of two counter machine
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with only one test for zero and one reset (or transfer operation) has effectively
computable semilinear reachability set [5]. So the idea balancing between the
size of dimension and power of basic operations gives a number of classes on the
border between decidability and undecidability.

The class of automata from Theorem 2 is another class of such system, where
in dimension 4 we use transfer operation, reverse transfer operation (ci := ci −
cj) and comparison between only two counters. Moreover, as it will be shown
in the next subsection, there is a resembling class of automata with decidable
reachability properties.

4.2 CFSM with LIFO Channel

The CFSM with a LIFO channel or stack is a pushdown automata. The only
difference from tag system is that we write or read to/from one side of the
channel. In such case the LIFO channel can be represented as a product of
matrices that could be extended only from one side. So we use the following
labels MR×, ML×, M−1

R × and M−1
L × for the matrix transition system and

other guards from Proposition 1 to check the first symbol in the stack.
The LIFO channel L, that contains the word w, can be changed only by two

modes: either to send another message a to the channel and then L will store
the word a ·w, or if L contains a word w′ = a ·w, to receive a message a, then L
will store a word w. The label Ma× denotes the right matrix multiplication and
corresponds to the push a into the stack or LIFO channel andM−1

a × corresponds
to the pop an a off the top of the stack. We use the same method that converts
a CFSM into the counter automaton. again. Note that the 4-counter automata
from Theorem 3 is very similar to the automata from Theorem 2, but the status
of reachability problem is opposite.

Theorem 3. Let A is a 4-counter automata where each transition is from the
set of unconditional jumps:{

c1 := c1 + c3
c2 := c2 + c4

;
{
c3 := c1 + c3
c4 := c2 + c4

or from the set of conditional jumps:

if (c1 > c3) then
{
c1 := c1 − c3
c2 := c2 − c4

;

if (c1 ≤ c3) then
{
c3 := c3 − c1
c4 := c4 − c2

.

The counters automata A is equivalent to a pushdown automata and therefore
has decidable reachability problem.

It is possible to apply the same methods to different tag-systems [19, 9, 13] to
derive a variety of multicounter automata with different structural constraints
that have decidable or undecidable properties.
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5 Conclusion

The main result of this paper is the reduction of PCP(n) to the vector reach-
ability problem with 4 × 4 matrix semigroup with n generators. We leave the
question whether the problem is decidable or undecidable for n=2 and n=3 as
an open problem. We have also shown that this technique can be applied for
other Post-systems and can be used for further investigation about the border
between decidability and undecidability in the class of multicounter automata.

Author is very grateful to anonymous referees for their careful review and
helpful suggestions on an earlier version of the paper and also to Alexei Lisitsa
for many discussions and valuable comments about this work.
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Morphism
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Abstract. In 1982, Séébold showed that the only overlap-free binary
words that are the fixed points of non-identity morphisms are the Thue–
Morse word and its complement. We strengthen Séébold’s result by show-
ing that the same result holds if the term ‘overlap-free’ is replaced with
‘ 73 -power-free’. Furthermore, the number 7

3 is best possible.

1 Introduction

In 1912, Thue [15] gave a construction of an infinite overlap-free word over a
binary alphabet. Since then the properties of infinite overlap-free words have
been studied extensively (see, for example, the survey by Séébold [12]). Thue
[15] also gave a complete characterization of the bi-infinite overlap-free binary
words (see also [6]), and Fife [5] gave a characterization of the (one-sided) infinite
overlap-free binary words. Séébold [11, 13] showed that the Thue–Morse word
and its complement are the only infinite overlap-free binary words that can be
obtained by iteration of a morphism. Another proof of this fact was later given by
Berstel and Séébold [3]. We show that this result can be strengthened somewhat.

In this paper we are particularly concerned with 7
3 -powers. Several results

previously known for overlap-free binary words have recently been shown to be
true for 7

3 -power-free binary words as well. For example, Restivo and Salemi’s
factorization theorem for overlap-free binary words [10] was recently shown to be
true for 7

3 -power-free binary words by Karhumäki and Shallit [7]. Similarly, Shur
[14] gave a characterization of the bi-infinite 7

3 -power-free binary words that is
analogous to that given by Thue for the bi-infinite overlap-free words. In fact,
Shur showed that these two sets of words are equal. Furthermore, Shur showed
that the number 7

3 is best possible; i.e., the result no longer holds if the number
7
3 is replaced by a larger number.

The number 7
3 has been shown to be a threshold for other properties as well.

Karhumäki and Shallit [7] also showed that the threshold between polynomial
growth and exponential growth for binary words is 7

3 ; i.e., for 2 < α ≤ 7
3 ,

there are polynomially many binary words of length n that avoid α-powers, but
for α > 7

3 , there are exponentially many binary words of length n that avoid
α-powers.

Kolpakov, Kucherov, and Tarannikov [8] showed that 7
3 is also a threshold

for the minimal letter density in binary words; i.e., for 2 < α ≤ 7
3 , the minimal

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 357–367, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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letter density in binary words avoiding α-powers is 1
2 , but for α > 7

3 , the minimal
letter density in binary words avoiding α-powers is less than 1

2 .
The goal of this paper is to generalize Séébold’s result by showing that the

Thue–Morse word and its complement are the only infinite 7
3 -power-free binary

words that can be obtained by iteration of a morphism. At first glance, it may
seem that this is an immediate consequence of Shur’s result; however, this is not
necessarily so, as there are infinite 7

3 -power-free binary words that cannot be
extended to the left to form bi-infinite 7

3 -power-free binary words. For example, if
we denote the complement of the Thue–Morse word by μω(1) (see Section 2), the
infinite binary word 001001μω(1) has been shown by Allouche, Currie, and Shallit
[1] to be the lexicographically least infinite overlap-free binary word; however,
it cannot be extended to the left to form a 7

3 -power-free word: prepending a 0
creates the cube 000, and prepending a 1 creates the 7

3 -power 1001001.
In general, results regarding infinite words are often more difficult to obtain

than the analogous results for bi-infinite words; for example, note that a charac-
terization of the bi-infinite overlap-free words was known to Thue [15] in 1912,
whereas a characterization of the infinite overlap-free words was only given much
later by Fife [5] in 1980.

2 Definitions and Notation

Let Σ be a finite, non-empty set called an alphabet. We denote the set of all
finite words over the alphabet Σ by Σ∗. We also write Σ+ to denote the set
Σ∗−{ε}, where ε is the empty word. Let Σk denote the alphabet {0, 1, . . . , k−1}.
Throughout this paper we will work exclusively with the binary alphabet Σ2.

Let N denote the set {0, 1, 2, . . .}. An infinite word is a map from N to Σ,
and a bi-infinite word is a map from Z to Σ. The set of all infinite words over
the alphabet Σ is denoted Σω. We also write Σ∞ to denote the set Σ∗ ∪Σω.

A map h : Σ∗ → Δ∗ is called a morphism if h satisfies h(xy) = h(x)h(y) for
all x, y ∈ Σ∗. A morphism may be defined simply by specifying its action on
Σ. A morphism h : Σ∗ → Σ∗ such that h(a) = ax for some a ∈ Σ is said to
be prolongable on a; we may then repeatedly iterate h to obtain the fixed point
hω(a) = axh(x)h2(x)h3(x) · · · .

An overlap is a word of the form axaxa, where a ∈ Σ and x ∈ Σ∗. A word
w′ is called a subword of w ∈ Σ∞ if there exist u ∈ Σ∗ and v ∈ Σ∞ such that
w = uw′v. We say a word w is overlap-free (or avoids overlaps) if no subword
of w is an overlap.

Let μ be the Thue–Morse morphism; i.e., the morphism defined by μ(0) = 01
and μ(1) = 10. It is well-known [9, 15] that the Thue–Morse word, μω(0), is
overlap-free. The complement of the Thue–Morse word, given by μω(1), is also
overlap-free.

We also need the notion of a fractional power, which was first introduced by
Dejean [4]. Let α be a rational number such that α ≥ 1. An α-power is a word
of the form xnx′, where x, x′ ∈ Σ∗, and x′ is a prefix of x with n+ |x′|/|x| = α.
We say a word w is α-power-free (or avoids α-powers) if no subword of w is an
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β-power for any rational β ≥ α; otherwise, we say w contains an α-power. Note
that a word is overlap-free if and only if it is (2 + ε)-power-free for all ε > 0; for
example, an overlap-free word is necessarily 7

3 -power-free.

3 Preliminary Lemmata

We will need the following result due to Shur [14].

Theorem 1 (Shur). Let w ∈ Σ∗2 , and let α > 2 be a real number. Then w is
α-power-free iff μ(w) is α-power-free.

We will also make frequent use of the following result due to Karhumäki and
Shallit [7]. This theorem is a generalization of a similar factorization theorem
for overlap-free words due to Restivo and Salemi [10].

Theorem 2 (Karhumäki and Shallit). Let x ∈ Σ∗2 be a word avoiding α-
powers, with 2 < α ≤ 7

3 . Then there exist u, v, y with u, v ∈ {ε, 0, 1, 00, 11} and
a word y ∈ Σ∗2 avoiding α-powers, such that x = uμ(y)v.

Next, we will establish a few lemmata. Lemma 1 is analogous to a similar
lemma for overlap-free words given in Allouche and Shallit [2, Lemma 1.7.6].
(This result for overlap-free words was also stated without formal proof by Bers-
tel and Séébold [3].)

Lemma 1. Let w ∈ Σ∗2 be a 7
3 -power-free word with |w| ≥ 52. Then w contains

μ3(0) = 01101001 and μ3(1) = 10010110 as subwords.

Proof. Since w is 7
3 -power-free, by Theorem 2 we can write

w = uμ(y)v , (1)

where y is 7
3 -power-free and |y| ≥ 24. Similarly, we can write

y = u′μ(y′)v′ , (2)

where y′ is 7
3 -power-free and |y′| ≥ 10. Again, we can write

y′ = u′′μ(y′′)v′′ , (3)

where y′′ is 7
3 -power-free and |y′′| ≥ 3. From (1)–(3), we get

w = uμ(u′μ(u′′μ(y′′)v′′)v′)v
= uμ(u′)μ2(u′′)μ3(y′′)μ2(v′′)μ(v′)v ,

where u, u′, u′′, v, v′, v′′ ∈ {ε, 0, 1, 00, 11}. Since y′′ is 7
3 -power-free and |y′′| ≥ 3,

y′′ contains both 0 and 1, and so μ3(y′′), and consequently w, contains both
μ3(0) = 01101001 and μ3(1) = 10010110 as subwords as required. ��



360 N. Rampersad

Lemma 2. Let w′ be a subword of w ∈ Σ∗2 , where w′ is either of the form
abbμ(w′′) or μ(w′′)bba for some a, b ∈ Σ2 and w′′ ∈ Σ∗2 . Suppose also that a �= b
and |w′′| ≥ 2. Then w contains a 7

3 -power.

Proof. Suppose ab = 10 and w′ = 100μ(w′′) (the other cases follow similarly).
The word μ(w′′) may not begin with a 0 as that would create the cube 000.
Hence we have w′ = 10010μ(w′′′) for some w′′′ ∈ Σ∗2 . If μ(w′′′) begins with 01,
then w′ contains the 7

3 -power 1001001. If μ(w′′′) begins with 10, then w′ contains
the 5

2 -power 01010. Hence, w contains a 7
3 -power. ��

Lemma 3. For i, j ∈ N, let w be a 7
3 -power-free word over Σ2 such that |w| =

(7 + 2j)2i − 1. Let a be an element of Σ2. Then waw contains a 7
3 -power x,

where |x| ≤ 7 · 2i.

Proof. Suppose a = 1 (the case a = 0 follows similarly). The proof is by induction
on i. For the base case we have i = 0. Hence, |w| ≥ 6 and |w| is even. If w either
begins or ends with 11, then w1w contains the cube 111, and the result follows.
Suppose then that w neither begins nor ends with 11. By explicitly examining
all 13 words of length six that avoid 7

3 -powers and neither begin nor end with
11, we see that all such words of length at least six can be written in the form
pbbq, where p, q ∈ Σ+

2 and b ∈ Σ2. Hence, w1w must have at least one subword
with prefix bb and suffix bb. Moreover, since |w| is even, there must exist such a
subword where the prefix bb and the suffix bb each begin at positions of different
parity in w1w. Let x be a smallest such subword such that w1w neither begins
nor ends with x. Suppose b = 0 (the case b = 1 follows similarly). Then either
x = 00100 or x contains a subword 01010 or 10101. Hence, w1w contains one of
the subwords 01010, 10101, or 1001001 as required.

Let us now assume that the lemma holds for all i′, where 0 < i′ < i. Since w
avoids 7

3 -powers, and since |w| ≥ 7, by Theorem 2 we can write w = uμ(w′)v,
where u, v ∈ {ε, 0, 1, 00, 11} and w′ ∈ Σ∗2 is 7

3 -power-free. By applying a case
analysis similar to that used in Cases (1)–(4) of the proof of Theorem 3, we can
eliminate all but three cases: (u, v) ∈ {(ε, ε), (ε, 0), (0, ε)}.

Case 1: (u, v) = (ε, ε). In this case w = μ(w′). This is clearly not possible, since
for i > 0, |w| = (7 + 2j)2i − 1 is odd.

Case 2: (u, v) = (ε, 0). Then w = μ(w′)0 and w1w = μ(w′)01μ(w′)0 = μ(w′0w′)0.
If |w| = (7 + 2j)2i − 1, we see that |w′| = (7 + 2j)2i−1 − 1. Hence, if
i′ = i − 1, we may apply the inductive assumption to w′0w′. We thus
obtain that w′0w′ contains a 7

3 -power x′, where |x′| ≤ 7 · 2i−1, and so
w1w must contain a 7

3 -power x = μ(x′), where |x| ≤ 7 · 2i.
Case 3: (u, v) = (0, ε). This case is handled similarly to the previous case, and

we omit the details.

By induction then, we have that waw contains a 7
3 -power x, where |x| ≤ 7 ·2i.

��
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Lemma 4. For i ∈ N, let w be a 7
3 -power-free word over Σ2 such that |w| =

5 · 2i − 1. Let a be an element of Σ2. Then waw contains a 7
3 -power x, where

|x| ≤ 5 · 2i.

Proof. The proof is analogous to that of Lemma 3 and we omit the details. ��

Lemma 5. For i, j ∈ Z+, let w and s be 7
3 -power-free words over Σ2 such that

|w| = 2i+1−1 or |w| = 3 ·2i−1, and |s| = 2j+1−1 or |s| = 3 ·2j −1. Assume also
that |s| ≥ |w|. Let a be an element of Σ2. Then sawawas contains a 7

3 -power.

Proof. Suppose a = 1 (the case a = 0 follows similarly). The proof is by induction
on i. For the base case we have i = 1 and either |w| = 3 or |w| = 5. An easy
computation suffices to verify that for all w with |w| = 3 or |w| = 5, and all
a, b ∈ Σ2

2 , a1w1w1b contains a 7
3 -power.

Let us now assume that the lemma holds for all i′, where 1 < i′ < i. Since w
avoids 7

3 -powers, and since |w| ≥ 7, by Theorem 2 we can write w = uμ(w′)v,
where u, v ∈ {ε, 0, 1, 00, 11} and w′ ∈ Σ∗2 is 7

3 -power-free. Similarly, we can
write s = u′μ(s′)v′, where u′, v′ ∈ {ε, 0, 1, 00, 11} and s′ ∈ Σ∗2 is 7

3 -power-
free. By applying a case analysis similar to that used in Cases (1)–(4) of the
proof of Theorem 3 below, we can eliminate all but three cases: (u, v, u′, v′) ∈
{(ε, ε, ε, ε), (ε, 0, ε, 0), (0, ε, 0, ε)}.

Case 1: (u, v, u′, v′) = (ε, ε, ε, ε). In this case w = μ(w′). This is clearly not
possible, since for i > 1, both |w| = 2i+1 −1 and |w| = 3 ·2i −1 are odd.

Case 2: (u, v, u′, v′) = (ε, 0, ε, 0). Then w = μ(w′)0, s = μ(s′)0, and

s1w1w1s = μ(s′)01μ(w′)01μ(w′)01μ(s′)0 = μ(s′0w′0w′0s′)0 .

If |w| = 2i+1 − 1 or |w| = 3 · 2i − 1, we see that |w′| = 2i − 1 or
|w| = 3 · 2i−1 − 1. Similarly, if |s| = 2j+1 − 1 or |s| = 3 · 2j − 1, we
see that |s′| = 2j − 1 or |s| = 3 · 2j−1 − 1. Hence, if i′ = i − 1, we
may apply the inductive assumption to s′0w′0w′0s′. We thus obtain
that s′0w′0w′0s′ contains a 7

3 -power x′, and so s1w1w1s must contain
a 7

3 -power x = μ(x′).
Case 3: (u, v, u′, v′) = (0, ε, 0, ε). This case is handled similarly to the previous

case, and we omit the details.

By induction then, we have that sawawas contains a 7
3 -power. ��

Lemma 6. Let n be a positive integer. Then n can be written in the form 2i−1,
3 · 2i − 1, 5 · 2i − 1, or (7 + 2j)2i − 1 for some i, j ∈ N.

Proof. If n = 1 then n = 21 − 1 as required. Suppose then that n > 1. Then we
may write n − 1 = m2i, where m is odd and i ∈ N. But for any odd positive
integer m, either m ∈ {1, 3, 5}, or m is of the form 7 + 2j for some j ∈ N, and
the result follows. ��
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4 Main Theorem

Let h : Σ∗ → Σ∗ be a morphism. We say that h is non-erasing if, for all a ∈ Σ,
h(a) �= ε. Let E be the morphism defined by E(0) = 1 and E(1) = 0. The
following theorem is analogous to a result regarding overlap-free words due to
Berstel and Séébold [3].

Theorem 3. Let h : Σ∗2 → Σ∗2 be a non-erasing morphism. If h(01101001) is
7
3 -power-free, then there exists an integer k ≥ 0 such that either h = μk or
h = E ◦ μk.

Proof. Let h(0) = x and h(1) = x′ with |x|, |x′| ≥ 1. The proof is by induction
on |x| + |x′|. If |x| < 7 and |x′| < 7, then a quick computation suffices to verify
that if h(01101001) is 7

3 -power-free, then either h = μk or h = E ◦ μk, where
k ∈ {0, 1, 2}. Let us assume then, without loss of generality, that |x| ≥ |x′| and
|x| ≥ 7. The word x must avoid 7

3 -powers, and so, by Theorem 2, we can write
x = uμ(y)v, where u, v ∈ {ε, 0, 1, 00, 11} and y ∈ Σ∗2 . We will consider all 25
choices for (u, v).

Case 1: (u, v) ∈ {(0, 00), (00, 0), (00, 00), (1, 11), (11, 1), (11, 11)}. Suppose (u, v)
= (0, 00). Then h(00) = 0μ(y)000μ(y)00 contains the cube 000, contrary
to the assumptions of the theorem. The argument for the other choices
for (u, v) follows similarly.

Case 2: (u, v) ∈ {(0, 11), (00, 1), (00, 11), (1, 00), (11, 0), (11, 00)}. For any of
these choices for (u, v), h(00) = uμ(y)vuμ(y)v contains a subword of
the form abbμ(y) or μ(y)bba for some a, b ∈ Σ2, where a �= b. Since
|x| ≥ 7, |y| ≥ 2, and so by Lemma 2 we have that h(00) contains a
7
3 -power, contrary to the assumptions of the theorem.

Case 3: (u, v) ∈ {(ε, 0), (0, ε), (ε, 1), (1, ε)}. Suppose (u, v) = (0, ε). Then h(00) =
0μ(y)0μ(y). We have two subcases.

Case 3a: μ(y) begins with 01 or ends with 10. Then by Lemma 2, h(00)
contains a 7

3 -power, contrary to the assumptions of the theorem.
Case 3b: μ(y) begins with 10 and ends with 01. Then h(00) = 0μ(y′)

01010μ(y′′) contains the 5
2 -power 01010, contrary to the assump-

tions of the theorem.
The argument for the other choices for (u, v) follows similarly.

Case 4: (u, v) ∈ {(ε, 00), (0, 0), (00, ε), (ε, 11), (1, 1), (11, ε)}. Suppose (u, v) =
(00, ε). Then h(00) = 00μ(y)00μ(y). The word μ(y) may not begin with
a 0 as that would create the cube 000. We have then that h(00) =
00μ(y)0010μ(y′) for some y′ ∈ Σ∗2 . By Lemma 2, h(00) contains a 7

3 -
power, contrary to the assumptions of the theorem. The argument for
the other choices for (u, v) follows similarly.

Case 5: (u, v) ∈ {(0, 1), (1, 0)}. Suppose (u, v) = (0, 1). By Lemma 6, the follow-
ing three subcases suffice to cover all possibilities for |y|.

Case 5a: |y| = (7+2j)2i−1 for some i, j ∈ N. We have h(00) = 0μ(y)10μ(y)1
= 0μ(y1y)1. By Lemma 3, y1y contains a 7

3 -power. The word h(00)
must then contain a 7

3 -power, contrary to the assumptions of the
theorem.
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Case 5b: |y| = 5·2i−1 for some i ∈ N. Again we have h(00) = 0μ(y)10μ(y)1 =
0μ(y1y)1. By Lemma 4, y1y contains a 7

3 -power. The word h(00)
must then contain a 7

3 -power, contrary to the assumptions of the
theorem.

Case 5c: |y| = 2i − 1 or |y| = 3 · 2i − 1 for some i ∈ N. We have two subcases.
Case 5c.i: |x′| < 7. We have h(0110) = 0μ(y)1x′x′0μ(y)1. The only x′ ∈

Σ∗2 where |x′| < 7 and 1x′x′0 does not contain a 7
3 -power is

x′ ∈ {10, 0110, 1001, 011010, 100110, 101001} .

However, each of these words either begins or ends with 10,
and so we have that h(0110) contains a subword of the form
100μ(y) or μ(y)110. Hence, by Lemma 2 we have that h(0110)
contains a 7

3 -power, contrary to the assumptions of the theorem.
Case 5c.ii: |x′| ≥ 7. By Theorem 2, we can write x′ = u′μ(z)v′, where

u′, v′ ∈ {ε, 0, 1, 00, 11} and z ∈ Σ∗2 is 7
3 -power-free. Applying the

preceding case analysis to x′ allows us to eliminate all but three
subcases.

Case 5c.ii.A: (u′, v′) = (0, 1). We have

h(0110) = 0μ(y)10μ(z)10μ(z)10μ(y)1 = 0μ(y1z1z1y)1 .

Moreover, by applying to x′ the same reasoning used in
Case 5a and Case 5b, we have |z| = 2j − 1 or |z| = 3 · 2j − 1
for some j ∈ N, and so by Lemma 5, y1z1z1y contains a
7
3 -power. The word h(0110) must then contain a 7

3 -power,
contrary to the assumptions of the theorem.

Case 5c.ii.B: (u′, v′) = (1, 0). Then h(01) = 0μ(y)11μ(z)0. The word μ(z)
may not begin with a 1 as that would create the cube 111.
We have then that h(01) = 0μ(y)1101μ(z′)0 for some z′ ∈
Σ∗2 . By Lemma 2, h(01) contains a 7

3 -power, contrary to the
assumptions of the theorem.

Case 5c.ii.C: (u′, v′) = (ε, ε). Then h(01) = 0μ(y)1μ(z). We have two
subcases.
– μ(z) begins with 01. Then h(01) = 0μ(y)101μ(z′) for

some z′ ∈ Σ∗2 . The word μ(y) may not end in 10 as
that would create the 5

2 -power 10101. Hence h(01) =
0μ(y′)01101μ(z′) for some y′ ∈ Σ∗2 . If μ(z′) begins with 10,
then h(01) contains the 7

3 -power 0110110. If μ(z′) begins
with 01, then h(01) contains the 5

2 -power 10101. Either
situation contradicts the assumptions of the theorem.

– μ(z) begins with 10. Then h(01) = 0μ(y)110μ(z′) for some
z′ ∈ Σ∗2 . By Lemma 2, h(01) contains a 7

3 -power, contrary
to the assumptions of the theorem.

The argument for the other choice for (u, v) follows similarly.
Case 6: (u, v) = (ε, ε). In this case we have x = μ(y).
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All cases except x = μ(y) lead to a contradiction. The same reasoning ap-
plied to x′ gives x′ = μ(y′) for some y′ ∈ Σ∗2 . Let the morphism h′ be defined by
h′(0) = y and h′(1) = y′. Then h = μ ◦ h′, and by Theorem 1, h′(01101001) is
7
3 -power-free. Moreover, |y| < |x| and |y′| < |x′|. Also note that for the preced-
ing case analysis it sufficed to consider the following words only: h(00), h(01),
h(10), h(11), h(0110), h(1001), and h(01101001). However, 00, 01, 10, 11, 0110,
and 1001 are all subwords of 01101001. Hence, the induction hypothesis can be
applied, and we have that either h′ = μk or h′ = E ◦ μk. Since E ◦ μ = μ ◦ E,
the result follows. ��

We now establish the following corollary.

Corollary 1. Let h : Σ∗2 → Σ∗2 be a morphism such that h(01) �= ε. Then the
following statements are equivalent.

(a) The morphism h is non-erasing, and h(01101001) is 7
3 -power-free.

(b) There exists k ≥ 0 such that h = μk or h = E ◦ μk.
(c) The morphism h maps any infinite 7

3 -power-free word to an infinite 7
3 -power-

free word.
(d) There exists an infinite 7

3 -power-free word whose image under h is 7
3 -power-

free.

Proof.

(a) =⇒ (b) was proved in Theorem 3.
(b) =⇒ (c) follows from Theorem 1 via König’s Infinity Lemma.
(c) =⇒ (d) : We need only exhibit an infinite 7

3 -power-free word: the Thue–
Morse word, μω(0), is overlap-free and so is 7

3 -power-free.
(d) =⇒ (a) : Let w be an infinite 7

3 -power-free word whose image under h
is 7

3 -power-free. By Lemma 1, w must contain 01101001, and
so h(01101001) is 7

3 -power-free.

To see that h is non-erasing, note that if h(0) = ε, then since h(01) �= ε,
h(1) �= ε. But then h(01101001) = h(1)4 is not 7

3 -power-free, contrary to what
we have just shown. Similarly, h(1) �= ε, and so h is non-erasing. ��

Let h : Σ∗2 → Σ∗2 be a morphism. We say that h is the identity morphism if
h(0) = 0 and h(1) = 1. The following corollary gives the main result.

Corollary 2. An infinite 7
3 -power-free binary word is a fixed point of a non-

identity morphism if and only if it is equal to the Thue–Morse word, μω(0), or
its complement, μω(1).

Proof. Let h : Σ∗2 → Σ∗2 be a non-identity morphism, and let us assume that
h has a fixed point that avoids 7

3 -powers. Then h maps an infinite 7
3 -power-free

word to an infinite 7
3 -power-free word, and so, by Corollary 1, h is of the form

μk or E ◦ μk for some k ≥ 0. Since h has a fixed point, it is not of the form
E ◦ μk, and since h is not the identity morphism, h = μk for some k ≥ 1. But
the only fixed points of μk are μω(0) and μω(1), and the result follows. ��
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5 The Constant 7
3 Is Best Possible

It remains to show that the constant 7
3 given in Corollary 2 is best possible;

i.e., Corollary 2 would fail to be true if 7
3 were replaced by any larger rational

number. To show this, it suffices to exhibit an infinite binary word w that avoids
( 7
3 + ε)-powers for all ε > 0, such that w is the fixed point of a

morphism h : Σ∗2 → Σ∗2 , where h is not of the form μk for any k ≥ 0. Kol-
pakov et al. [8] have already given an example of such a word. Their example
was the fixed point of a 21-uniform morphism; we will give a similar solution
using a 19-uniform morphism.

For rational α, we say that a word w avoids α+-powers if w avoids (α + ε)-
powers for all ε > 0.

Let h : Σ∗2 → Σ∗2 be the morphism defined by

h(0) = 0110100110110010110
h(1) = 1001011001001101001 .

Since |h(0)| = |h(1)| = 19, h is not of the form μk for any k ≥ 0. We will
show that the fixed point hω(0) avoids 7

3
+-powers by using a technique similar

to that given by Karhumäki and Shallit [7]. We first state the following lemma,
which may be easily verified computationally.

Lemma 7. (a) Suppose h(ab) = th(c)u for some letters a, b, c ∈ Σ2 and words
t, u ∈ Σ∗2 . Then this inclusion is trivial (that is, t = ε or u = ε).

(b) Suppose there exist letters a, b, c ∈ Σ2 and words s, t, u, v ∈ Σ∗2 such that
h(a) = st, h(b) = uv, and h(c) = sv. Then either a = c or b = c.

Theorem 4. The fixed point hω(0) avoids 7
3
+-powers.

Proof. The proof is by contradiction. Let w ∈ Σ∗2 avoid 7
3
+-powers, and suppose

that h(w) contains a 7
3
+-power. Then we may write h(w) = xyyy′z for some

x, z ∈ Σ∗2 and y, y′ ∈ Σ+
2 , where y′ is a prefix of y, and |y′|/|y| > 1

3 . Let us
assume further that w is a shortest such string, so that 0 ≤ |x|, |z| < 19. We will
consider two cases.

Case 1 : |y| ≤ 38. In this case we have |w| ≤ 6. Checking all 20 words w ∈ Σ6
2

that avoid 7
3
+-powers, we see that, contrary to our assumption, h(w)

avoids 7
3
+-powers in every case.

Case 2 : |y| > 38. Noting that if h(w) contains a 7
3
+-power, it must contain a

square, we may apply a standard argument (see [7] for an example) to
show that Lemma 7 implies that h(w) can be written in the following
form:

h(w) = A1A2 . . . AjAj+1Aj+2 . . . A2jA2j+1A2j+2 . . . An−1A
′
nA

′′
n ,
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for some j, where

Ai = h(ai) for i = 1, 2, . . . , n and ai ∈ Σ2

An = A′nA
′′
n

y = A1A2 . . . Aj

= Aj+1Aj+2 . . . A2j

y′ = A2j+1A2j+2 . . . An−1A
′
n

z = A′′n .

Since y′ is a prefix of y, and since |y′|/|y| > 1
3 , A′n must be a prefix of Ak,

where k =  j
3! + 1. However, noting that for any a ∈ Σ2, any prefix of h(a)

suffices to uniquely determine a, we may conclude that Ak = An. Hence, we
may write

h(w) = A1A2 . . . Ak−1Ak . . . AjAj+1Aj+2 . . . Aj+k−1Aj+k . . . A2j

A2j+1A2j+2 . . . An−1An ,

where

y = A1A2 . . . Ak−1Ak . . . Aj

= Aj+1Aj+2 . . . Aj+k−1Aj+k . . . A2j

y′z = A2j+1A2j+2 . . . An−1An

= A1A2 . . . Ak−1Ak .

We thus have
w = (a1a2 . . . aj)2a1a2 . . . ak ,

where k =  j
3! + 1. Hence, w is a 7

3
+-power, contrary to our assumption. The

result now follows. ��

Theorem 4 thus implies that the constant 7
3 given in Corollary 2 is best

possible.
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Abstract. We contribute new facets to the discussion on the equiva-
lence problem for E-pattern languages (also referred to as extended or
erasing pattern languages). This fundamental open question asks for the
existence of a computable function that, given any pair of patterns, de-
cides whether or not they generate the same language. Our main result
disproves Ohlebusch and Ukkonen’s conjecture (Theoretical Computer
Science 186, 1997) on the equivalence problem; the respective argumen-
tation, that largely deals with the nondeterminism of pattern languages,
is restricted to terminal alphabets with at most four distinct letters.

1 Introduction

Patterns—finite strings that consist of variables and terminal symbols—are com-
pact and “natural” devices for the definition of numerous regular and nonregular
formal languages. A pattern generates a word by a uniform substitution of the
variables with arbitrary strings of terminal symbols, and, accordingly, its lan-
guage is the set of all words that can be obtained by suchlike morphisms. For
instance, the language generated by the pattern α = x1x1 a b x2 (with variables
x1, x2 and terminals a, b) includes all words where the prefix consists of two
occurrences of the same string, followed by the string ab and concluded by an ar-
bitrary suffix. Thus, the language of α contains, e.g., the words w1 = b a b a a b a
and w2 = a b b b, whereas v1 = b b b b a and v2 = b a a b b are not covered by α.

The investigation of patterns in strings—initiated by Thue [16, 17]—may be
seen as a classical topic in the research on word monoids and combinatorics of
words (cf., e.g., [2], a survey is given in [3]). Contrary to this, the definition
of pattern languages as described above—introduced by Angluin [1]—originally
has been motivated by considerations on algorithmic language learning within
the scope of inductive inference. Since then, however, the properties of pattern
languages have been intensively studied from a language theoretical point of view
as well, e.g. by Jiang, Kinber, Salomaa, Salomaa, Yu [7, 8]; for a survey see [10].
These examinations reveal that the characteristics of languages generated by a
definition which disallows the substitution of variables with the empty word—as
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given by Angluin—and of those produced by a definition allowing the empty
substitution (as applied when generating w2 in our example) differ significantly.
Languages of the latter type have been introduced by Shinohara [15]; they are
called extended, erasing, or simply E-pattern languages.

In spite of the wide range of profound examinations, a number of fundamen-
tal properties of E-pattern languages is still unresolved; one of the best-known
open problems among these is the decidability of the equivalence, i.e. the ques-
tion on the existence of a total computable function that, given any pair of
patterns, decides whether or not they generate the same language. This prob-
lem, that for Angluin’s pattern languages has a trivial answer in the affirmative,
has been tackled several times (cf. [5, 7, 8, 4, 11, 13]), contributing a number of
positive results on subclasses, properties, conjectures, and conditions, but no
comprehensive answer. Consequently, the anticipation of a positive outcome, as
expressed in [8], so far could be neither verified nor refuted.

The current state of knowledge on E-pattern languages reveals that several
of their properties strongly depend on the size of the terminal alphabet. For
instance, the subclass generated by terminal-free patterns is learnable if and
only if the alphabet is not binary (cf. [12]), whereas the full class is learnable
for unary alphabets, but not for those with two, three or four letters (cf. [13]).
Consequently, and particularly for small alphabets, E-pattern languages show
a variety of (frequently fairly surprising) discontinuities. This phenomenon is
brought about by the fact that especially those words over only a few distinct
letters tend to be ambiguous, i.e. one and the same pattern can generate such
a word by different substitutions. The influence of this nondeterminism of E-
pattern languages—that is even more complex provided that the patterns do not
consist of variables only—on several open problems is not completely understood
yet, and therefore most corresponding partial results are restricted to those cases
where ambiguity of words is somewhat easy to grasp (cf., e.g., [7, 8, 11]).

These observations establish the background of the present paper, that pro-
vides new insight into the consequences of nondeterminism of pattern languages.
We apply our approach to the prevailing conjecture on the equivalence problem
for E-pattern languages—given by Ohlebusch and Ukkonen [11]—according to
which, for terminal alphabets with at least three distinct letters, two arbitrary
patterns α and β generate the same language if and only if there exist terminal-
preserving morphisms φ and ψ such that φ(α) = β and ψ(β) = α. This conjec-
ture, that we recently have claimed to be incorrect for alphabets with exactly
three letters (cf. [13]), in the present paper is disproven for alphabets of size 4.

2 Preliminaries

We now proceed formally. For notions and preliminary results not given in this
paper we refer to [14] or, if appropriate, to the respective referenced literature.

N is the set of natural numbers, {0, 1, 2, . . . }. A word is a finite string of
symbols. For an arbitrary set A of symbols, A+ denotes the set of all non-empty
words over A and A∗ the set of all (empty and non-empty) words over A. Any
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set L ⊆ A∗ is a language over an alphabet A. We designate the empty word as
ε. For the word that results from the n-fold concatenation of a letter a or of a
word w we write an or (w)n, respectively. | · | denotes the size of a set or the
length of a word, respectively, and |w|a the frequency of a letter a in a word w.

The following notion allows to address certain parts of a word w over an
alphabet A: If w contains n, n ≥ 1, occurrences of a subword u then for every i,
1 ≤ i ≤ n, u〈i〉 is the ith occurrence (from the left) of u in w. For that case, the
subword [w/u〈i〉] is the prefix of w up to (but not including) the leftmost letter
of u〈i〉 and the subword [u〈i〉\w] is the suffix of w beginning with the first letter
that is to the right of u〈i〉. Moreover, for every word w that contains at least i
occurrences of a subword u, j occurrences of subword v and that satisfies w =
w1 u〈i〉w2 v〈j〉w3 with w1, w2, w3 ∈ A∗, we use [u〈i〉\w/v〈j〉] as an abbreviation
for [u〈i〉\[w/v〈j〉]]. Thus, for appropriate u, v, w, the specified subwords satisfy
w = [w/u〈i〉] u〈i〉 [u〈i〉\w] or w = [w/u〈i〉] u〈i〉 [u〈i〉\w/v〈j〉] v〈j〉 [v〈j〉\w],
respectively; e.g., with w = a b c a b b, u = a and v = a b, the definition leads to
[w/u〈2〉] = a b c, [u〈2〉\w] = b b, and [u〈1〉\w/v〈2〉] = b c.

We proceed with the pattern specific terminology. Σ is a finite alphabet of
terminal symbols andX = {x1, x2, x3, . . . } an infinite set of variables,Σ∩X = ∅.
Henceforth, we use lower case letters in typewriter font, e.g. a, b, c, as terminal
symbols exclusively, and terminal words are named as u, v, or w.

A pattern is a non-empty word over Σ ∪X, a terminal-free pattern is a non-
empty word overX; naming patterns we use lower case letters from the beginning
of the Greek alphabet such as α, β, γ. var(α) denotes the set of all variables of a
pattern α. We write PatΣ for the set of all patterns over the union of X and a
specific alphabet Σ or, if there is no need to emphasise the terminal alphabet,
Pat for short.

Following [4] we designate two patterns α, β as similar if and only if α =
α0 u1α1 u2 . . . αm−1 umαm and β = β0 u1β1 u2 . . . βm−1 umβm with m ∈ N,
αi, βi ∈ X+ for 1 ≤ i < m, α0, β0, αm, βm ∈ X∗ and ui ∈ Σ+ for i ≤ m; in
other words, we call patterns similar if their terminal substrings are identical
and occur in the same order in the patterns.

A morphism φ : (Σ ∪X)∗ −→ (Σ ∪X)∗ is terminal-preserving if and only if,
for every a ∈ Σ, φ(a) = a. If additionally, for a terminal-preserving morphism
φ and for all xi ∈ X, φ(xi) ∈ X∗ then we call φ similarity-preserving. We
say that patterns α, β are (morphically) coincident if there exist similarity-
preserving morphisms φ and ψ such that φ(α) = β and ψ(β) = α; we call them
(morphically) semi-coincident if there is either such a φ or such a ψ, and, for
the case that there is neither such a φ nor such a ψ, they are designated as
(morphically) incoincident.

A terminal-preserving morphism σ is a substitution if and only if, for every
xi ∈ X, σ(xi) ∈ Σ∗. The E-pattern language LΣ(α) of a pattern α is defined as
the set of all w ∈ Σ∗ such that σ(α) = w for some substitution σ. For any word
w = σ(α) we say that σ generates w, and for any language L = LΣ(α) we say
that α generates L. If Σ is understood then we denote the E-pattern language
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of a pattern α simply as L(α). We use ePAT as an abbreviation for the full class
of E-pattern languages (or ePATΣ if the corresponding alphabet is of interest).

We designate a pattern α as succinct if and only if |α| ≤ |β| for all patterns β
with L(β) = L(α). The pattern β = x1x2x1x2, e.g., generates the same language
as α = x1x1, and therefore β is not succinct; α is succinct as L(x1) �= L(α).

According to [9] we denote a word w as ambiguous (in respect of a pattern
α) if and only if it can be generated by several substitutions of α, i.e. there
exist substitutions σ and σ′, σ(xi) �= σ′(xi) for some xi ∈ var(α), such that
σ(α) = w = σ′(α). Correspondingly, we call a word w unambiguous (in respect
of α) if and only if there is exactly one substitution σ with σ(α) = w. The word
w1 = aaba, for instance, is ambiguous in respect of α = x1a x2 since it can
be generated by, e.g., σ and σ′ with σ(x1) = a, σ(x2) = ba and σ′(x1) = ε,
σ′(x2) = aba. The example word w2 = ba is unambiguous in respect of α.

We now proceed with some decidability problems on E-pattern languages:
Let ePAT� be any set of E-pattern languages. We say that the inclusion problem
for ePAT� is decidable if and only if there exists a computable function which,
given two arbitrary patterns α, β with L(α), L(β) ∈ ePAT�, decides whether or
not L(α) ⊆ L(β). Accordingly, the equivalence problem is decidable if and only
if there exists another computable function which for every pair of patterns α,
β with L(α), L(β) ∈ ePAT� decides whether or not L(α) = L(β). Obviously,
the decidability of the inclusion implies the decidability of the equivalence. As
mentioned in Section 1, the decidability of the equivalence problem for ePAT
has not been resolved yet, but there is a number of positive results on subclasses
given in [11]. The inclusion problem is known to be undecidable (cf. [8]). Under
certain circumstances, however, the inclusion problem is decidable; this results
from the following fact:

Fact 1 ([11]). Let Σ be an alphabet and α, β two arbitrary similar patterns such
that Σ contains two distinct letters not occurring in α and β. Then LΣ(β) ⊆
LΣ(α) iff there exists a similarity-preserving morphism φ such that φ(α) = β.

In particular, Fact 1 implies the decidability of the inclusion problem for the
class of terminal-free E-pattern languages if |Σ| ≥ 2 (proven in [5] and [8]).

The following theorem shows that any consideration on the equivalence prob-
lem can be restricted to similar patterns. Therefore, Fact 1 implies the decid-
ability of the equivalence for all pairs of patterns if one of the two patterns does
not contain at least two distinct letters of the alphabet.

Fact 2 ([5] and [7]). Let Σ be an alphabet, |Σ| ≥ 3, and let α, β ∈ PatΣ. If
LΣ(α) = LΣ(β) then α and β are similar.

Moreover, Fact 2 suggests a possible approach to the equivalence problem,
that has been addressed by [4] and [11]: Obviously, the equivalence of E-pattern
languages is decidable provided that Fact 1 holds for all similar patterns (and
not only for those satisfying the additional condition).

We conclude this section with a definition that originates in [11] and that
is motivated by the facts stated above: Let Σ be an alphabet and define Σ′ :=
Σ ∪ {a} for an arbitrary a �∈ Σ. We say that the equivalence for ePATΣ is
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preserved under alphabet extension if and only if, for every pair α, β ∈ PatΣ,
LΣ(α) = LΣ(β) implies LΣ′(α) = LΣ′(β) and vice versa.

3 On Ohlebusch and Ukkonen’s Conjecture

The equivalence problem for E-pattern languages has first been examined in [5]
and [7] and later in [8], [4], and [11]. The latter authors give a procedure that
for every pattern computes a shortest normal form. They conjecture that, for
alphabets with at least three letters, two patterns generate the same language if
and only if their normal forms are the same, and the authors paraphrase their
conjecture as follows:

Conjecture 1 ( [11]). For an alphabet Σ, |Σ| ≥ 3, and patterns α1, α2 ∈ PatΣ,
LΣ(α1) = LΣ(α2) if and only if α1 and α2 are morphically coincident.

Furthermore, as a consequence of Fact 1 and Fact 2, the authors annotate
that the equivalence problem is decidable for |Σ| ≥ 3 if the equivalence for
ePATΣ is preserved under alphabet extension (cf. [11], Open Question 2).

The choice of alphabet size 3 as a lower bound in Conjecture 1 might be
caused by the following observations: The patterns α1 = x1 ax2 bx3 and α2 =
x1 a bx2, for instance, generate the same language if Σ = {a, b} (although they
are semi-coincident) since for every word in {σi(α1) | σi(x2) �= ε} a second sub-
stitution σ′i can be given with σ′i(α1) = σi(α1) and σ′(x2) = ε. Thus, this specific
ambiguity of words, that is caused by the small alphabet and by the composition
of variables and terminal symbols in α1, brings about the equivalence of LΣ(α1)
and LΣ(α2). Contrary to this, for |Σ| ≥ 3, the existence of analogue examples
seems to be rather implausible since for every variable in a pattern at least one
occurrence can be chosen for assigning a substitution that contains a letter which
differs from the terminal symbols to the left and to the right of the variable (cf.,
e.g., the proof of Fact 2 as given in [7]). Consequently, Conjecture 1 suggests
that such patterns do not exist for alphabets containing at least three letters.

As a by-product of learning theoretical studies, [13] anticipates that—at least
for alphabets with exactly three letters—this conjecture is incorrect. More pre-
cisely, the paper claims that, for Σ := {a, b, c}, Σ′ := Σ ∪ {d} and

α̃abc,1 := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 x

2
7 x8 b x9 a x2 x

2
10 x

2
4 x

2
5 x

2
6 x

2
11 x8 b x12,

α̃abc,2 := x1 a x2 x
2
3 x

2
4 x

2
7 x8 b x9 a x2 x

2
10 x

2
4 x

2
11 x8 b x12,

LΣ(α̃abc,1) = LΣ(α̃abc,2), but LΣ′(α̃abc,1) ⊃ LΣ′(α̃abc,2), and α̃abc,1 and α̃abc,2
are semi-coincident.

The present paper actually disproves Conjecture 1; to this end, however,
we regard different alphabets, namely those of size 4. Thus, we establish an
additional result to that in [13]. Besides, the chosen alphabet size is by far
more challenging, and therefore it requires a significantly more elaborate and
instructive reasoning. Hence, our presumably unexpected main result reads as
follows:
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Theorem 1. Let Σ be an alphabet, |Σ| = 4. Then the equivalence for ePATΣ is
not preserved under alphabet extension.

Theorem 2. Let Σ be an alphabet, |Σ| = 4. Then there exist morphically inco-
incident patterns α1, α2 ∈ PatΣ such that LΣ(α1) = LΣ(α2).

Referring to these statements we can conclude that for “small” alphabets
(i.e. for those with at most four distinct letters) the equivalence of E-pattern
languages has some common properties, which nicely contrast with the expec-
tations (potentially) involved in Fact 2, Conjecture 1, and Theorem 7.2 of [8]:

Corollary 1. Let Σ be an alphabet, |Σ| ≤ 4. Then the equivalence for ePATΣ
is not preserved under alphabet extension.

Corollary 2. Let Σ be an alphabet, |Σ| ≤ 4. Then there exist morphically inco-
incident or semi-coincident patterns α1, α2 ∈ PatΣ such that LΣ(α1) = LΣ(α2).

The proof of Theorem 1 and Theorem 2, that for the given patterns α̃abc,1
and α̃abc,2 can be adapted to the case |Σ| = 3 with little effort, is accomplished in
Section 3.1. Its underlying principle follows the course indicated above: We com-
pose two sophisticated incoincident example patterns—each of them consisting
of 82 variables and terminals—and identify “decisive” words in their languages.
Then we precisely examine the ambiguity of these words and reveal that all of
them can be generated by substitutions assigning the empty word to at least
one among two specific variables; thereby we can conclude that both patterns
generate the same language. In other words, we analyse the nondeterminism of
E-pattern languages, that has been the subject, e.g., of [9]. However, the pre-
vailing point of view in literature does not exactly meet our requirements as
it investigates the ambiguity of pattern languages, i.e. the maximum ambiguity
among all words in the language, whereas we ask for the existence of particular
alternative substitutions for selected words. Thus, our method is rather related
to the research on equality sets (cf. [6]).

In spite of the extensive argumentation required even for a single alphabet,
we expect our method to be useful for future examinations of Conjecture 1
with regard to different alphabet sizes as well. Moreover, we suggest that the
(supposably necessary) complexity of our example patterns explains the lack of
comprehensive results on the equivalence problem so far, and we consider the
subsequent section to provide an insight into the extraordinary combinatorial
depth of E-pattern languages.

Obviously, with the present state of knowledge on the subject, the given re-
sults do not imply the non-decidability of the equivalence problem for ePATΣ
with |Σ| = 4. They show, first, that the expected lower bound in terms of
alphabet size for a uniform behaviour of E-pattern languages concerning the
decidability of the equivalence—as expressed in Conjecture 1—needs to be re-
determined (provided such a bound exists at all). Second, they suggest that any
decision procedure for |Σ| = 4 (if any) presumably needs to be more elaborate
than that given in [11]—which, by the way, still might be applicable to |Σ| ≥ 5.
Additional remarks on suchlike aspects are given in Section 3.2.
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3.1 Proof of the Main Results

The present section contains four lemmata. Lemma 1 and Lemma 4 prove The-
orem 1; the argumentation on Theorem 2 is accomplished by Lemma 1 again
and, additionally, Lemma 3—which, in turn, utilises Lemma 2.

We begin with the example patterns that constitute the core of our reasoning:

Definition 1 (First Version). The patterns α̃abcd,1 and α̃abcd,2 are given by

α̃abcd,1 := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 x7 b x8 a x2 x

2
9 x

2
4 x

2
5 x

2
10 x7 b x11

c x12 x
2
13 x

2
14 x

2
15 x

2
16 x17 d x18 c x12 x

2
19 x

2
14 x

2
15 x

2
20 x17 d x21

x2
14 x

2
15 x

2
14 x

2
15 x

2
14 x

2
15 x22 x

2
4 x

2
5 x

2
4 x

2
5 x

2
4 x

2
5 x23 x4 x14 x24

α̃abcd,2 := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 x7 b x8 a x2 x

2
9 x

2
4 x

2
5 x

2
10 x7 b x11

c x12 x
2
13 x

2
14 x

2
15 x

2
16 x17 d x18 c x12 x

2
19 x

2
14 x

2
15 x

2
20 x17 d x21

x2
14 x

2
15 x

2
14 x

2
15 x

2
14 x

2
15 x22 x

2
4 x

2
5 x

2
4 x

2
5 x

2
4 x

2
5 x23 x14 x4 x24.

Since α̃abcd,1 and α̃abcd,2 might be regarded as fairly intricate we give a second
version of Definition 1 revealing the structure of the patterns:

Definition 1 (Second Version). Consider the patterns

γ1 := x2
4 x

2
5,

γ2 := x2
14 x

2
15,

β1 := x2 x
2
3 γ1 x

2
6 x7,

β′1 := x2 x
2
9 γ1 x

2
10 x7,

β2 := x12 x
2
13 γ2 x

2
16 x17,

β′2 := x12 x
2
19 γ2 x

2
20 x17

α̂1 := x1 a β1 b x8 a β′1 b x11 c β2 d x18 c β′2 d x21,

α̂2 := (γ2)3 x22 (γ1)3.

Then α̃abcd,1 := α̂1 α̂2 x23 x4 x14 x24 and α̃abcd,2 := α̂1 α̂2 x23 x14 x4 x24.

In order to facilitate the understanding of our reasoning we give some brief
informal explanatory remarks before proceeding with the actual proof of Theo-
rems 1 and 2: Evidently, concerning the question whether or not L(α̃abcd,1) and
L(α̃abcd,2) are different, only those words are of interest that are generated by
a substitution which is not empty for both x4 and x14, as the order of the last
occurrences of these variables is the only difference between the patterns. There-
fore, the components of α̃abcd,1 and α̃abcd,2 are tailor-made for ensuring the ambi-
guity of all words generated by a substitution σ that satisfies σ(x4) �= ε �= σ(x14).

With regard to the subpatterns of α̃abcd,1 and α̃abcd,2, we first examine the
kernels, i.e. γ1 and γ2. Obviously, for any substitution σ, if σ(γ1) or σ(γ2) do not
contain at least two different letters then σ(γ1) or σ(γ2), respectively, are am-
biguous and can be generated simply by x5 or x15, respectively; thus, x4 or x14
can be substituted empty. In our formal argumentation, we utilise this fact only
for σ(γ1) ∈ {c}∗∪{d}∗ or σ(γ2) ∈ {a}∗∪{b}∗. The other cases are covered by the
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ambiguity of σ(x1 a β1 b x8) (resp. σ(x11 c β2 d x18)) whenever σ(γ1) (resp. σ(γ2))
contains—possibly among others—the letters a or b (resp. c or d), leading again
to an optional empty substitution for x4 (resp. x14). Thus, σ only can generate
a decisive word if σ(γ1) consists of c and d and σ(γ2) of a and b. Such a choice
of a substitution utilising letters that are distinguishable from the terminals to
the left and to the right of the corresponding variable subword in the pattern
probably is the most natural option and is used frequently (see, e.g., proof on
Theorem 7.2 in [8]). However, for that case, σ(α̂2) = w0 a bw1 a bw2 c dw3 c dw4
for some words wi, i ≤ 4. Consequently, σ(α̃abcd,1) and σ(α̃abcd,2) can be gen-
erated by the (sub-)pattern x1 a b x8 a b x11 c d x18 c d x21, and therefore x4
and x14 can be substituted empty again. The variables with single occurrences,
such as x8 and x23, are used to compensate the side effects of the empty substi-
tution of x4 or x14; the modified repetitions of β1 (as β′1) and β2 (as β′2) and,
particularly, those variables that distinguish β1 from β′1 (e.g. x3) and β2 from β′2
(e.g. x13) guarantee that α̃abcd,1 and α̃abcd,2 are incoincident. The latter point,
one of the statements of Theorem 2, is discussed in Lemma 3.

As the ambiguity of decisive words affects α̃abcd,1 and α̃abcd,2 in the same way,
the stated phenomenon allows us to prove the following, crucial lemma:

Lemma 1. Let Σ1 = {a, b, c, d}. Then LΣ1(α̃abcd,1) = LΣ1(α̃abcd,2).

Proof. We first prove LΣ1(α̃abcd,1) ⊆ LΣ1(α̃abcd,2). Hence, let σ be an arbitrary
substitution that is applicable to α̃abcd,1. We show that there exists a substitution
σ′ such that σ′(α̃abcd,2) = σ(α̃abcd,1). To this end, we refer to α̃abcd,1 and α̃abcd,2
as declared in the second version of Definition 1 and regard the following cases—
that evidently can be restricted to a consideration of σ(γ1) and σ(γ2):

Case 1 σ(γ1) ∈ {a, b, c, d}+ \ {b, c, d}+:
Define σ′(x1) := σ(x1 a x2 x

2
3) [σ(γ1)/ a〈1〉],

σ′(x2) := [a〈1〉 \σ(γ1)],
σ′(x8) := σ(x8 a x2 x

2
9) [σ(γ1)/ a〈1〉],

σ′(x22) := σ(x22 (γ1)3),
σ′(x23) := σ(x23 x4),
σ′(xj) := σ(xj), xj ∈ var(β2 β

′
2) ∪ {x6, x7, x10, x11, x18, x21, x24},

σ′(xj) := ε, xj ∈ var(γ1) ∪ {x3, x9}.
Case 2 σ(γ1) ∈ {b, c, d}+ \ {c, d}+:

Define σ′(x7) := [σ(γ1)/ b〈1〉],
σ′(x8) := [b〈1〉 \σ(γ1)] σ(x2

6 x7 b x8),
σ′(x11) := [b〈1〉 \σ(γ1)] σ(x2

10 x7 b x11),
σ′(x22) := σ(x22 (γ1)3),
σ′(x23) := σ(x23 x4),
σ′(xj) := σ(xj), xj ∈ var(β2 β

′
2) ∪ {x1, x2, x3, x9, x18, x21, x24},

σ′(xj) := ε, xj ∈ var(γ1) ∪ {x6, x10}.
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Case 3 σ(γ1) ∈ {c}∗ ∪ {d}∗:
Define σ′(x4) := ε,

σ′(x5) := σ(x4 x5),
σ′(x23) := σ(x23 x4),
σ′(xj) := σ(xj), xj ∈ var(α̃abcd,2) \ (var(γ1) ∪ {x23}).

Case 4 σ(γ1) ∈ {c, d}+ \ ({c}+ ∪ {d}+) and σ(γ2) ∈ {a, b, c, d}+ \ {a, b, d}+:
Define σ′(x11) := σ(x11 c x12 x

2
13) [σ(γ2)/ c〈1〉],

σ′(x12) := [c〈1〉 \σ(γ2)],
σ′(x18) := σ(x18 c x12 x

2
19) [σ(γ2)/ c〈1〉],

σ′(x22) := σ((γ2)3 x22),
σ′(x24) := σ(x14 x24),
σ′(xj) := σ(xj), xj ∈ var(β1 β

′
1) ∪ {x1, x8, x16, x17, x20, x21, x23},

σ′(xj) := ε, xj ∈ var(γ2) ∪ {x13, x19}.

Case 5 σ(γ1) ∈ {c, d}+ \ ({c}+ ∪ {d}+) and σ(γ2) ∈ {a, b, d}+ \ {a, b}+:
Define σ′(x17) := [σ(γ2)/ d〈1〉],

σ′(x18) := [d〈1〉 \σ(γ2)] σ(x2
16 x17 d x18),

σ′(x21) := [d〈1〉 \σ(γ2)] σ(x2
20 x17 d x21),

σ′(x22) := σ((γ2)3 x22),
σ′(x24) := σ(x14 x24),
σ′(xj) := σ(xj), xj ∈ var(β1 β

′
1) ∪ {x1, x8, x11, x12, x13, x19, x23},

σ′(xj) := ε, xj ∈ var(γ2) ∪ {x16, x20}.

Case 6 σ(γ1) ∈ {c, d}+ \ ({c}+ ∪ {d}+) and σ(γ2) ∈ {a}∗ ∪ {b}∗:
Define σ′(x14) := ε,

σ′(x15) := σ(x14 x15),
σ′(x24) := σ(x14 x24),
σ′(xj) := σ(xj), xj ∈ var(α̃abcd,2) \ (var(γ2) ∪ {x24}).

Case 7 σ(γ1) ∈ {c, d}+ \ ({c}+ ∪ {d}+) and σ(γ2) ∈ {a, b}+ \ ({a}+ ∪ {b}+):

Consequently, σ((γ1)3) contains at least two occurrences of the subword
c d and σ((γ2)3) contains at least two occurrences of the subword a b. Fur-
thermore, due to the shape of these subwords, their occurrences must be
non-overlapping. Therefore σ′ can be given as follows:

Define σ′(x1) := σ(α̂1) [σ(α̂2)/ a b〈1〉],
σ′(x8) := [a b〈1〉\σ(α̂2)/ a b〈2〉],
σ′(x11) := [a b〈2〉\σ(α̂2)/ c d〈1〉],
σ′(x18) := [c d〈1〉\σ(α̂2)/ c d〈2〉],
σ′(x21) := [c d〈2〉\σ(α̂2)] σ(x23 x4 x14 x24),
σ′(xj) := ε, xj ∈ var(α̃abcd,2) \ {x1, x8, x11, x18, x21}.
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With the annotations on the shape of α̃abcd,1 and α̃abcd,2 in mind, it is obvious
that, in every of the seven cases, σ′(α̃abcd,2) = σ(α̃abcd,1). Thus, since σ has been
chosen arbitrarily and as the cases are exhaustive, LΣ1(α̃abcd,1) ⊆ LΣ1(α̃abcd,2).

The proof for LΣ1(α̃abcd,2) ⊆ LΣ1(α̃abcd,1) is similar: In the argumentation
given above, it is sufficient to replace α̃abcd,1 by α̃abcd,2 and vice versa and,
additionally, to adapt σ′(x23) and σ′(x24) in Cases 1-7 in an adequate manner
such that it matches the shape of α̃abcd,1. The rest is verbatim the same. ��

With Lemma 1, the crucial element of Theorem 1 and Theorem 2 is proven.
In the next step we complete the proof of Theorem 2. As a prerequisite thereof,
we proceed with an evident lemma that is of great use for the upcoming proof
of Lemma 3 and that is a direct consequence of Lemma 1 in [13]:

Lemma 2. Let α be a terminal-free pattern and let φ : X∗ −→ X∗ be a mor-
phism with φ(α) = α. Then either φ(xj) = xj for every xj ∈ var(α) or there is
an xj′ ∈ var(α) such that |φ(xj′)| ≥ 2 and xj′ ∈ var(φ(xj′)).

We call any xj′ satisfying these two conditions an anchor variable (in respect
of the morphism φ).

Now we can prove that there are no similarity-preserving morphisms mapping
α̃abcd,1 and α̃abcd,2 onto each other:

Lemma 3. α̃abcd,1 and α̃abcd,2 are morphically incoincident.

Proof. Assume to the contrary there is a similarity-preserving morphism φ with
φ(α̃abcd,1) = α̃abcd,2 or with φ(α̃abcd,2) = α̃abcd,1. Then, obviously, φ(x4) �= x4 or
φ(x14) �= x14. Consequently—since, e.g., β1 and β2 occur in α̃abcd,1 as well as
in α̃abcd,2 and since necessarily φ(β1) = β1 and φ(β2) = β2—there must be an
anchor variable xj′ in β1 or β2 (cf. Lemma 2).

We start with β1. First, for j′ ∈ {3, 4, 5, 6}, xj′ being an anchor variable
implies that φ(x2

j′) = xkxk′δxkxk′δ with variables xk, xk′ and δ ∈ X∗, but there
is no substring in β1 that equals the given shape of φ(xj′). Second, because of
the necessity of φ(β′1) = β′1, x2 cannot be an anchor variable since φ(x2) had to
equal both x2x3δ and x2x9δ for a δ ∈ X∗. Finally, due to an analogous reason,
j′ �= 7. Thus, there is no anchor variable in var(β1). This contradicts φ(x4) �= x4.

With regard to β2, the argumentation is equivalent, and, consequently, there
is no anchor variable in var(β2). Therefore, the assumption is incorrect. ��

With Lemma 1 and Lemma 3, the proof of Theorem 2 is accomplished. Con-
sequently, and referring to Fact 1, it is obvious that, for a terminal alphabet Σ3
with at least six distinct letters, LΣ3(α̃abcd,1) �= LΣ3(α̃abcd,2). Hence, for |Σ| = 4
or |Σ| = 5, the equivalence for ePATΣ is not preserved under alphabet extension.
In order to conclude the proof of Theorem 1, we therefore have to show explicitly
that the given example patterns generate different languages for alphabets with
exactly five letters:

Lemma 4. Let Σ2 ⊇ {a, b, c, d, e}. Then LΣ2(α̃abcd,1) �= LΣ2(α̃abcd,2).
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Proof. We show that there is a word in LΣ2(α̃abcd,1) \LΣ2(α̃abcd,2). To this end,
we refer to α̃abcd,1 and α̃abcd,2 as declared in the second version of Definition 1
and consider the substitution σ given by

σ(xj) :=

⎧⎨⎩c e3j−2 c c e3j−1 c c e3j c , xj ∈ var(β1 β
′
1),

a e3j−2 a a e3j−1 a a e3j a , xj ∈ var(β2 β
′
2),

ε , else.

Then σ(α̃abcd,1) has the following suffix generated by σ(d x21 α̂2 x23 x4 x14 x24):

d ((a e40 a a e41 a a e42 a)2(a e43 a a e44 a a e45 a)2)3

((c e10 c c e11 c c e12 c)2(c e13 c c e14 c c e15 c)2)3

c e10 c c e11 c c e12 c a e40 a a e41 a a e42 a

and this is the only occurrence of that subword in σ(α̃abcd,1).
Now assume to the contrary there is a substitution σ′ with σ′(α̃abcd,2) =

σ(α̃abcd,1). As, due to σ(xj) ∈ {a, c, e}∗ for all xj ∈ var(α̃abcd,1), the letters b
and d each occur exactly twice in σ(α̃abcd,1) we may conclude that σ′(β) = σ(β)
for β ∈ {β1, β

′
1, β2, β

′
2}. Therefore—and since, according to Theorem 3 of [12],

the patterns β1 β
′
1 and β2 β

′
2 are succinct—Lemma 1 of [12] is applicable, which

shows that in the given case necessarily σ′(xj) = v0 c c e3j−1 c c v1, v0, v1 ∈ Σ∗,
for all xj ∈ var(β1 β

′
1) and σ′(xj) = v2 a a e3j−1 a a v3, v2, v3 ∈ Σ∗, for all

xj ∈ var(β2β
′
2). Consequently, σ′(x23x14x4x24) = v4 a a e41 a a w c c e11 c c v5,

v4, v5 ∈ Σ∗, for some w ∈ {a, c, e}∗. However, for every occurrence of this
subword in σ(α̃abcd,1)—or, more precisely, in σ(α̂2)—we have w = v6 a e44 a v7,
v6, v7 ∈ Σ∗ (see suffix of σ(α̃abcd,1) as depicted above). Thus, we may conclude
σ′(x15) �= v8 a e44 a v9, v8, v9 ∈ Σ∗, since the frequency of the subword a e44 a
in σ(α̃abcd,1) equals | α̃abcd,2 |x15 and since at least one occurrence of a e44 a—
in fact, it is even all six occurrences in σ(α̂2)—is contained in σ′(x14 x4). This
contradicts the claim σ′(xj) = v2 a a e3j−1 a a v3 for all xj ∈ var(β2 β

′
2).

Consequently, there is no substitution σ′ with σ′(α̃abcd,2) = σ(α̃abcd,1). ��

Thus, with Lemma 1 and Lemma 4, Theorem 1 is proven. Moreover, the proof
of Lemma 4 shows that our way of composing example patterns cannot directly
be used for the transition between |Σ| = 5 and |Σ| = 6. The argumentation
on Lemma 1 is based on the fact that every substitution either matches the
“easier” Cases 1 - 6 or exactly reconstructs the terminal substring of the pattern
(see Case 7). We are uncertain whether these substitutions can be avoided for
all patterns—and not only for our examples—in case of |Σ| ≥ 5.

3.2 Some Notes

The proof of Lemma 4 can be extended canonically such that in addition to
LΣ2(α̃abcd,2) �⊇ LΣ2(α̃abcd,1) the opposite direction LΣ2(α̃abcd,1) �⊇ LΣ2(α̃abcd,2)
is shown. Consequently, both languages are incomparable, and it seems as if,
for |Σ| = 4 and |Σ′| > 4, there is no pair of patterns α, β ∈ PatΣ such that
LΣ(α) = LΣ(β) and LΣ′(α) ⊂ LΣ′(β). In contrast to this, for smaller alphabets
there are patterns that possess such a feature, for instance
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– α = x2
1 and β = x2

1x
2
2 for the transition |Σ| = 1 vs. |Σ| = 2,

– α = x1 a bx2 and β = x1 ax2 bx3 for the transition |Σ| = 2 vs. |Σ| = 3, and
– α = α̃abc,2 and β = α̃abc,1 for the transition |Σ| = 3 vs. |Σ| = 4.

In this context, we conjecture that, for an alphabet Σ with four letters and
morphically semi-coincident patterns α, β ∈ PatΣ, necessarily LΣ(α) �= LΣ(β).
Particularly with regard to Theorem 2, we consider this fairly counter-intuitive.

We conclude this paper with a hint on a potential problem concerning any
common normal form for α̃abcd,1 and α̃abcd,2: We conjecture that both patterns
are succinct for all alphabets with at least four letters. If this is correct then,
for |Σ| = 4, not only the concrete algorithm in [11] has to fail (as shown in
Theorem 2), but any suchlike approach as there are E-pattern languages that
presumably do not have a “natural” unique shortest normal form.

Acknowledgements.The author wishes to thank Rolf Wiehagen and a referee
for their helpful comments on a draft of this paper.
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6. T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 7, pages 439–510. Springer, 1997.

7. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. Int. J. Comput. Math., 50:147–163, 1994.

8. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. J.
Comput. Syst. Sci., 50:53–63, 1995.

9. A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.
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Abstract. In a preceding paper (Bruyère and Carton, automata on
linear orderings, MFCS’01), automata have been introduced for words
indexed by linear orderings. These automata are a generalization of au-
tomata for finite, infinite, bi-infinite and even transfinite words studied
by Büchi. Kleene’s theorem has been generalized to these words. We
prove that rational sets of words on countable scattered linear ordering
are closed under complementation using an algebraic approach.

1 Introduction

In his seminal paper [12], Kleene showed that automata on finite words and
regular expressions have the same expressive power. Since then, this result has
been extended to many classes of structures like infinite words [6, 15], bi-infinite
words [10, 16], transfinite words [8, 1], traces, trees, pictures.

In [4], automata accepting linear-ordered structures have been introduced
with corresponding rational expressions. These linear structures include finite
words, infinite, transfinite words and their mirrors. These automata are usual
automata on finite words, extended with limit transitions. A Kleene-like theorem
was proved for words on countable scattered linear orderings. Recall that an
ordering is scattered if it does not contain a dense subordering isomorphic to Q.

For many structures, the class of rational sets is closed under many operations
like substitutions, inverse substitutions and boolean operations. As for boolean
operations, the closure under union and intersection are almost always easy to
get. The closure under complementation is often much more difficult to prove.
This property is important both from the practical and the theoretical point of
view. It means that the class of rational sets forms an effective boolean algebra.
It is used whenever some logic is translated into automata. For instance, in both
proofs of the decidability of the monadic second-order theory of the integers by
Büchi [7] and the decidability of the monadic second-order theory of the infinite
binary tree by Rabin [19], the closure under complementation of automata is the
key property.
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In [4], the closure under complementation was left as an open problem. In this
paper, we solve that problem in a positive way. We show that the complement
of a rational set of words on countable scattered linear orderings is also rational.

The classical method to get an automaton for the complement of a set of fi-
nite words accepted by an automaton A is through determinization. It is already
non-trivial that the complement of a rational set of infinite words is also rational.
The determinization method cannot be easily extended to infinite words. In his
seminal paper [7], Büchi used another approach based on a congruence on finite
words and Ramsey’s theorem. This method is somehow related to our algebraic
approach. McNaughton extended the determinization method to infinite words
[13] proving that any Büchi automaton is equivalent to a deterministic Muller au-
tomaton. Büchi pushed further this method and extended it to transfinite words
[8]. It is then very complex. In [3], the algebraic approach was used to give an-
other proof of the closure under complementation for transfinite words. In [9],
we have already proved the result for words on countable scattered linear order-
ings of finite ranks. The determinization method cannot be applied because any
automaton is not equivalent to a deterministic one. In that paper, we extended
the method used by Büchi in [7] using an additional induction on the rank. Since
ranks of countable scattered linear orderings range over all countable ordinals,
this approach is not suitable for words on all these orderings. In this paper, we
prove the whole result for all countable scattered linear orderings using an alge-
braic approach. We define a generalization of semigroups, called "-semigroups.
We show that, when finite, these "-semigroups are equivalent to automata. We
also show that, by analogy with the case of finite words, a canonical "-semigroup,
called the syntactic "-semigroup, can be associated with any rational set X. It
has the property of being the smallest "-semigroup recognizing X. A continu-
ation of this paper would be to extend the equivalence between star-free sets,
first order logic and aperiodic semigroups [22, 14, 2] and also between rational
sets and the monadic second order theory.

Both hypotheses that the orderings are scattered and countable are really
necessary. Büchi already pointed out that rational sets of transfinite words of
length greater that ω1 (the least non-countable ordinal) are not closed under
complement. It can be proved that the set of words on scattered linear order-
ings is not rational as a subset of words on all linear orderings although its
complement is rational.

Our proof of the complementation closure is effective. Given an automaton A,
it gives another automaton B that accepts words that are not accepted by A. It
gives another proof of the decidability of the equivalence of these automata [5].

This paper is organized as follows. Definitions concerning linear orderings and
rational sets are first recalled in Sections 2 and 3. Then, Section 4 introduces
the algebraic structure of "-semigroup. The proof of equivalence between finite
"-semigroups and automata is sketched in both directions in Sections 5 and 6.
Finally, the syntactic "-semigroup corresponding to a rational set is defined in
Section 7.
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2 Words on Linear Orderings

This section recalls basic definitions on linear orderings but the reader is referred
to [21] for a complete introduction. Hausdorff’s characterization of countable
scattered linear orderings is given and words indexed by linear orderings are
introduced.

Let J be a set equipped with an order <. The ordering J is linear if for any j
and k in J , either j < k or k < j. Let A be a finite alphabet. A word x = (aj)j∈J

indexed by a linear ordering J is a function from J to A. J is called the length of
x. For instance ω is the length of right-infinite words a0a1... and ζ is the length
of bi-infinite words ...a−1a0a1... .

2.1 Product of Words Indexed by Linear Orderings

For any linear ordering J , we denote by −J the backward linear ordering that
is the set J equipped with the reverse ordering. For instance, −ω is the linear
ordering of negative integers.

The sum J + K of two linear orderings is the set J ∪K equipped with the
ordering < extending the orderings of J and K by setting j < k for any j ∈ J
and k ∈ K. Formally, the sum

∑
j∈J

Kj is the set of all pairs (k, j) such that

k ∈ Kj equipped with the ordering defined by (k1, j1) < (k2, j2) if and only if
j1 < j2 or (j1 = j2 and k1 < k2 in Kj1).

The sum of linear orderings helps to define the products of words. Let J be
a linear ordering and let (xj)j∈J be words of respective length Kj for any j ∈ J .
The word x =

∏
j∈J

xj obtained by concatenation of the words xj with respect

to the ordering on J is of length L =
∑
j∈J

Kj . For instance, if for any j ∈ ω, we

denote by xj = aωj

, then x =
∏

j∈ω

xj is the word x = aωω

of length
∑
j∈ω

ωj = ωω.

The sequence (xj)j∈J of words is called a J-factorization of the word x =
∏

j∈J

xj .

2.2 Scattered Linear Orderings

A linear ordering J is dense if for any j and k in J such that j < k, there
exists an element i of J such that j < i < k. It is scattered if it contains no
dense subordering. The ordering ω of natural integers and the ordering ζ of
relative integers are scattered. More generally, ordinals are scattered orderings.
We denote by N the subclass of finite linear orderings, O the class of countable
ordinals and of S the class of countable scattered linear orderings. The following
characterization of scattered orderings is due to Hausdorff.

Theorem 1. [Hausdorff [11]] A countable linear ordering J is scattered if and
only if J belongs to

⋃
α∈O

Vα where the classes Vα are inductively defined by:
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1. V0 = {0,1}
2. Vα = {

∑
j∈J

Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈
⋃

β<α

Vβ}.

where 0 and 1 are respectively the orderings with zero and one element.

In order to simplify the proofs, we use slightly different inductive classes: For
any α ∈ O, the class Wα is defined by : Wα = {

∑
j∈J

Kj | J ∈ N and Kj ∈ Vα}.

The inclusions Vα ⊂ Wα ⊂ Vα+1 hold for any ordinal α thus, using Theorem 1,
scattered linear orderings can be defined from the classes Wα by: S =

⋃
α∈O

Wα.

The rank of a linear ordering J is the smallest ordinal α such that J ∈ Wα. We
denote by A� the set of all words over A indexed by countable scattered linear
orderings.

3 Rational Sets of Words on Linear Orderings

Bruyère and Carton have introduced rational expressions and automata for
words indexed by countable scattered linear orderings. They have proved that
a set of words is rational if and only if it is accepted by a finite automaton
extending Kleene’s theorem. This section shortly recalls definitions of rational
operations and automata but the reader is referred to [4] for more details.

3.1 Rational Expressions

Let A be a finite alphabet. The set Rat(A�) of rational sets of words over A
indexed by countable scattered linear orderings is the smallest set containing
{a} for any a ∈ A and closed under the following rational operations defined for
any subsets X and Y of A� by :

X + Y = {z| z ∈ X ∪ Y }
X · Y = {x · y| x ∈ X, y ∈ Y } X∗ = {

n

Π
j=1

xj | n ∈ N , xj ∈ X}

Xω = { Π
j∈ω

xj | xj ∈ X} X−ω = { Π
j∈−ω

xj | xj ∈ X}

X# = { Π
j∈α

xj | α ∈ O, xj ∈ X} X−# = { Π
j∈−α

xj | α ∈ O, xj ∈ X}

X " Y = { Π
j∈J∪Ĵ∗

zj | J ∈ S \ ∅, zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗} where

Ĵ∗ = Ĵ \ {(∅, J), (J, ∅)}.

The notation Ĵ is defined in the next section.

3.2 Automata on Linear Orderings

An automaton on linear orderings is a classical finite automaton with additional
limit transitions of the form P−→q or q−→P where P is a set of states.

Definition 1. An automaton A = (Q,A,E, I, F ) on linear orderings is defined
by a finite set of states Q, a finite alphabet A, a set of transitions E ⊆ (Q×A×
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Q) ∪ (P(Q) × Q) ∪ (Q × P(Q)) and initial and final sets of states I ⊆ Q and
F ⊆ Q.

The definition of paths is based on the notion of cut that we explain now: Let
x be a word indexed by an ordering J ∈ S. To any two-factorization x = yz of
x, one can associate a partition of J into two intervals (K,L) such that |y| = K
and |z| = L. Such a partition is called a cut of J . The set Ĵ = {(K,L)|K ∪ L =
J ∧ ∀k ∈ K, ∀l ∈ L, k < l} is the set of cuts of the ordering J . Then, a path
labelled x is a function from the set Ĵ into the set of states. As the set Ĵ is
naturally equipped with the ordering (K1, L1) < (K2, L2) if and only ifK1 ⊂ K2,
a path labelled by a word of length J is a word over Q of length Ĵ .

Let γ = (qc)c∈Ĵ be a word of length Ĵ over Q, the limit sets of states of γ at
a given cut c of Ĵ are defined by:

lim
c−

γ = {q ∈ Q| ∀c′
< c, ∃c′′

c
′
< c

′′
< c and q = qc′′ }

lim
c+

γ = {q ∈ Q| ∀c′
> c, ∃c′′

c < c
′′
< c

′
and q = qc′′ }

Definition 2. Let A = (Q,A,E, I, F ) be an automaton on linear orderings and
let x = (aj)j∈J be a word of length J on A. A path γ of label x in A is a word
γ = (qc)c∈Ĵ of length Ĵ over Q such that for any (K,L) ∈ Ĵ :

– If there exists l ∈ L such that (K ∪ {l}, L \ {l}) ∈ Ĵ

then q(K,L)
al−→q(K∪{l},L\{l}) ∈ E else lim

(K,L)−
γ → q(K,L) ∈ E.

– If there exists k ∈ K such that (K \ {k}, L ∪ {k}) ∈ Ĵ then
q(K\{k},L∪{k})

ak−→q(K,L) ∈ E else q(K,L) → lim
(K,L)+

γ ∈ E.

Thus, if a cut has a predecessor or a successor, usual transitions are used,
otherwise the path uses limit transitions.

As Ĵ has the least element (∅, J) and the greatest element (J, ∅) for any linear
ordering J , a path has always a first and a last state. A word is accepted by an
automata if it is the label of a path leading from an initial state to a final state.
We denote by p

x=⇒ q the existence of a path leading from the state p to the
state q of label x.

It has been proved in [4] that automata and rational expressions have the
same expressive power.

0 1

a

b

0 → {1}

{0, 1} → 0

Fig. 1. Automaton on linear orderings accepting the set (a−ωb)#
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Theorem 2. [4] A set of words indexed by countable scattered linear orderings
is rational if and only if it is accepted by a finite automata.

4 Algebraic Characterization of Rational Sets

A semigroup is a set S equipped with an associative binary product. The semi-
group S in which had been added a neutral element is denoted by S1. An element
e ∈ S is an idempotent if e2 = e and the set of idempotents of S is denoted by
E(S). A pair (s, e) ∈ S × S is right linked (respectively left linked) if e ∈ E(S)
and se = s (respectively es = s). Two right linked pairs (s1, e1) and (s2, e2) are
conjugated if there exists a, b ∈ S1 such that e1 = ab, e2 = ba, s1a = s2 and
s2b = s1. The conjugacy relation is an equivalence relation on right linked pairs
[17].

4.1 �-Semigroups

The product of semigroups is generalized to recognize sets of words indexed
by countable scattered linear orderings. A "-semigroup is a generalization of a
usual semigroup. The product of a sequence indexed by any scattered ordering
is defined.

Definition 3. A "-semigroup is a set S equipped with product π : S�−→S which
maps any word of countable scattered linear length over S to an element of S.

– for any element s of S, π(s) = s.
– for any word x over S of countable scattered linear length and for any fac-

torization x =
∏

j∈J

xj where J ∈ S,

π(x) = π(
∏
j∈J

π(xj))

The latter condition is a generalization of associativity.

For instance, the set A� equipped with the concatenation is a "-semigroup.

Example 1. The set S = {0, 1} equipped with the product π defined for any
u ∈ S� by π(u) = 0 if u has at least one occurence of the letter 0 and π(u) = 1
otherwise is a "-semigroup.

For any two elements s and t of a "-semigroup (S, π), the finite product π(st)
is merely denoted by st.

A sub-"-semigroup T of a "-semigroup S is a subset of S closed under product.
A morphism of "-semigroup is an application which preserves the product. A
congruence of "-semigroup is an equivalence relation ∼ stable under product: If
sj ∼ tj for any j ∈ J , then π(

∏
j∈J

sj) ∼ π(
∏

j∈J

tj). The set S/∼ is a "-semigroup. A

"-semigroup T is a quotient of a "-semigroup S if there exists an onto morphism
from S to T . A "-semigroup T divides S if T is the quotient of a sub-"-semigroup
of S.
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4.2 Finite �-Semigroups

A "-semigroup (S, π) is said to be finite if S is finite. Even when S is finite, the
function π is not easy to describe because the product of any sequence has to
be given. It turns out that the function π can be described using a semigroup
structure on S with two additional functions (called τ and −τ) from S to S.
This gives a finite description of the function π. The functions τ and −τ are the
counterpart of limit transitions of automata. This finite description is based on
the next Lemma which follows directly from Ramsey’s Theorem [20].

Let x =
∏
i∈ω

xi an ω-factorization. Another factorization x =
∏
i∈ω

yi is called

a superfactorization if there is a sequence (ki)i∈ω of integers such that y0 =
x0 . . . xk0 and yi = xki−1+1 . . . xki

for all i ≥ 1.

Lemma 1. Let ϕ : A�−→S be a morphism into a finite "-semigroup. For any
factorization x =

∏
i∈ω

xi, there exists a superfactorization x = Π
i∈ω

yi and a right

linked pair (s, e) ∈ S × E(S) such that ϕ(y0) = s and ϕ(yi) = e for any i > 0.

Such a factorization is called a ramseyan factorization, see Theorem 3.2 in
[18].

Definition 4. Let S be a semigroup. A function τ : S−→S (respectively −τ :
S−→S) is compatible to the right with S (respectively to the left) if and only
if for any s, t in S and any integer n the following properties hold: s(ts)τ =
(st)τ and (sn)τ = sτ (respectively (st)−τs = (ts)−τ and (sn)−τ = s−τ ).

The product of a finite "-semigroup S can be finitely described by functions
compatible to the right and to the left with S.

Theorem 3. Let (S, π) be a finite "-semigroup. The binary product defined for
any s, t in S by s · t = π(st) naturally endows a structure of semigroup and the
functions τ and −τ respectively defined by sτ = π(sω) and s−τ = π(s−ω) are
respectively compatible to the right and to the left with S.

Conversely, let S be a finite semigroup and let τ and −τ be functions re-
spectively compatible to the right and to the left with S. Then S can be uniquely
endowed with a structure of "-semigroup (S, π) such that sτ = π(sω) and s−τ =
π(s−ω).

The first part of the theorem follows directly from the associativity of the
product π. Conversely, let S be a finite semigroup and let τ and −τ be functions
respectively compatible to the right and to the left with S. The product of a
word x = (sj)j∈J over S of length J ∈ S is defined by induction on α ∈ O for
any J ∈ Wα by the following way:

Let J ∈ W0 and let x ∈ SJ . There exists an integer m and s1, . . ., sm in S
such that x = s1 . . . sm. We set π(x) = s1 · s2 . . . sm.

Let J ∈ Wα where α > 1 and let x ∈ SJ . The linear ordering J can be
decomposed as a sum J =

∑
i∈I

Ki where I ∈ N ∪ {ω,−ω} and for all i ∈ I,

Ki ∈
⋃

β<α

Wβ . There exists a factorization x =
∏
i∈I

xi such that for all i ∈ I,

|xi| = Ki.
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– J = {1, . . . ,m} ∈ N : we set π(x) = π(x1) . . . π(xm).
– J = ω: There exists a superfactorization x = Π

i∈ω
yi and a right linked pair

(s, e) ∈ S × E(S) such that ϕ(y0) = s and ϕ(yi) = e for any i > 0. We set
π(x) = seτ .

– J = −ω : Symmetrically to the previous case, we set π(x) = e−τs.

Since two linked pairs associated with two factorizations of a word are con-
jugated [18], it can be proved by induction on α that π is uniquely defined and
associative on S�.

Example 2. The "-semigroupe S = {0, 1} of Example 1 is defined by the finite
product 00 = 01 = 10 = 0 and 11 = 1 and by the compatible functions τ and
−τ defined by 0τ = 0−τ = 0 and 1τ = 1τ = 1.

4.3 Recognizability

It is well known that rational sets of finite words are exactly those recognized
by finite semigroups. This result is generalized for words indexed by countable
scattered linear orderings.

Definition 5. Let S and T be two "-semigroups. The "-semigroup T recognizes
a subset X of S if and only if there exists a morphism ϕ : S−→T and a subset
P ⊆ T such that X = ϕ−1(P ). A set X ⊆ A� is recognizable if and only if there
exists a finite "-semigroup recognizing it.

Example 3. The set S = {0, 1} equipped with the product π defined for any
u ∈ S� by π(u) = 1 if u ∈ 1# and π(u) = 0 otherwise is a "-semigroup. It is also
defined by the finite product 00 = 01 = 10 = 0 et 11 = 1 and by the compatible
functions τ and −τ defined by 0τ = 0−τ = 1−τ = 0 and 1τ = 1. Define the
morphism of "-semigroup ϕ : A�−→S by ϕ(a) = 1 for any a ∈ A. The set A# is
recognizable since A# = ϕ−1({1}).

For any finite alphabet A, Rec(A�) denotes the set of subsets of A� recogniz-
able by a finite "-semigroup.

Theorem 4. A set of words indexed by countable scattered linear orderings is
rational iff it is recognizable.

Example 4. The setX = (ab)� is recognized by the "-semigroup S = {s, t, e, f, 0}
whose product is defined by st = e, ts = f , ee = e, ff = f , es = s, ft = t,
sf = s, te = t, eτ = e, e−τ = e, fτ = t, f−τ = s where any other product is
equal to 0. Defining the morphism ϕ : A� → S by ϕ(a) = s and ϕ(b) = t, we get
X = ϕ−1(e).

If X is recognized by a morphism ϕ : S−→T , the set A� \X is also recognized
by ϕ since A� \X = ϕ−1(S \ P ). Therefore, we obtain following theorem.

Theorem 5. Rational sets of words on countable scattered linear orderings are
closed under complementation.



Complementation of Rational Sets on Countable Scattered Linear Orderings 389

Example 5. The set X = A∗ is recognized by the "-semigroup S = {0, 1} whose
product is defined by 11 = 1, 01 = 10 = 00 = 0 and by the compatible functions
0τ = 0−τ = 1τ = 1−τ = 0. Define the morphism ϕ : A� → S by ϕ(a) = 1 for
any a ∈ A. One gets X = ϕ−1(1) and the complement A� \ X = (A�)ωA� +
A�(A�)−ω = ϕ−1(0).

The next section is devoted to sketches of proof of Theorem 4.

5 From �-Semigroups to Automata

Let (S, π) be a finite "-semigroup. By Theorem 3, the product π is defined by
compatible functions τ and −τ . Let X be a subset of A� recognized by S. There
exists a morphism of "-semigroup ϕ : A�−→S and a subset P of S such that
X = ϕ−1(P ). Since rational sets are closed under finite union, one may suppose
that P is a single element {p}. Let h be the finite substitution which associates to
each element s of S the set ϕ−1(s)∩A. Since X = h(π−1(p)∩ϕ(A)�), it suffices
to prove that the set π−1(p) of words over S whose product is p, is rational.
Recall that the Green’s relations are defined from the following preorders:

s ≤R t ⇐⇒ ∃a ∈ S1, s = ta
s ≤L t ⇐⇒ ∃a ∈ S1, s = at
s ≤J t ⇐⇒ ∃a, b ∈ S1, s = atb

For any K ∈ {R,L,J }, sKt if and only if s ≤K t and t ≤K s. We also
denote by s <K t iff s ≤K t and not t ≤K s. Recall that the equivalence relation
D = RL = LR is equal to J when S is finite.

The proof is by induction on the D-class structure of S. For any D-class D
of S, denote by:

SD = {s ∈ S | ∀p ∈ D, s ≥J p} and TD = {s ∈ S | ∀p ∈ D, s >J p}

We define an automaton on linear orderings accepting words over SD and
computing the product π of its path’s labels in both directions.

Let AD = (QD, SD, ED) be the automaton defined by:

QD = S1
D × S1

D × B is the set of states where B = {0, 1}

ED = {(s, rt, b) r−→(sr, t, b′) | b ∈ B, b′ = (r ∈ D)}

∪ {{(si, ti, bi)}1≤i≤m−→(s, t, b) | b ∈ B,∃1 ≤ i ≤ m , bi = 1 ,
∃1 ≤ k ≤ m , ∃e ∈ E(D) , ske = sk , etk = tk , s = ske

τ and tk = eτ t}

∪ {(s, t, b)−→{(si, ti, bi)}1≤i≤m | b ∈ B,∃1 ≤ i ≤ m , bi = 1 ,
∃1 ≤ k ≤ m , ∃e ∈ E(D) , ske = sk , etk = tk , t = e−τ tk and sk = se−τ}

The boolean component of QD allows limit transitions only if the label of the
path admits a ramseyan factorization associated to an idempotent of D. Since
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two right linked pairs (s1, e1) and (s2, e2) of a same D-class are conjugated iff
s1Rs2 , it can be shown by induction on the rank that AD computes properly
the product π. The words of S�D admitting ramseyan factorizations associated
to idempotents of J -above D-classes are taken care by a substitution which
is rational by induction. Let D be a D-class of S and let f be the rational
substitution defined by:

f : SD −→ Rat(SD
�)

s −→

{
π−1(s) if s ∈ TD

{s} ∪ Fs ∪Gs if s ∈ D

where for any s ∈ D,

Fs =
⋃

s1,...,sm>J s,
s1...sm=s

π−1(s1) . . . π−1(sm)

Gs =
⋃

t,e>J s,

teτ =s

π−1(t)π−1(e)ω ∪
⋃

t,e>J s,

e−τ t=s

π−1(e)−ωπ−1(t).

If Ls denotes the set of words recognized by the automaton AD with the
initial state {(1, s, 0)} and the final set of states {(s, 1, b)| b ∈ B} for any s ∈ SD,
it can be proved that for any p ∈ D, f(Lp) = π−1(p) using another induction
on the rank.

6 From Automata to �-Semigroups

This proof of the converse is adapted from [3]. Let A = (Q,A,E, I, F ) be an
automaton on linear orderings accepting a set X ⊆ A�. The content of a path is
the set of states occurring in the path and p

x=⇒
P

q denotes a path leading from

p to q of label x and of content P . Let T = P(Q) be the set of all subsets of
Q and K = P(T ) be the set of subsets of T . The set K is equipped with the
following product and union:

kk′ = {t ∪ t′ | t ∈ k, t′ ∈ k′} and k + k′ = k ∪ k′

Let S be the set of all Q×Q matrices whose entries are in K with product
defined by:

(m ·m′)q,q′ =
⋃

p∈Q

mq,p ·m′p,q′ = {t ∪ t′ | ∃p ∈ Q, t ∈ mq,p, t′ ∈ m′p,q′}

The semigroup S is finite and by Theorem 3, it suffices to define compatible
functions to endow a structure of "-semigroup. Define the function τ by:

mτ
q,q′ = {t ∪ {q′} | ∃t′ ⊂ t, ∃p ∈ Q, t ∈ mπ

q,p, t
′ ∈ mπ

p,p and t′−→q′ ∈ E}

where π is the smallest integer such that mπ is an idempotent matrix. The
function −τ is defined symmetrically and it can be proved that τ and −τ are
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functions respectively compatible on the right and left with S. It remains to
define a morphism ϕ : A�−→S recognizing X. For each letter a of A, we define
the matrix ma = ϕ(a) corresponding to the edges of A labelled by a: The entry
(q, q′) of ma is equal to {{q, q′}} if q a−→q′ ∈ E or ∅ otherwise. An induction on
the rank would show that for all word x ∈ A�, ϕ(x) = m where the matrix m
memorizes the contents of paths labelled by x:

mq,q′ = {l | q x=⇒
l
q′}

A word x ∈ A� belongs to X iff ϕ(x) has a (i, f)non-empty entry where i and f
are respectively initial and final states. Thus X is recognized by S.

7 Syntactic �-Semigroup

Let X be a recognizable subset of A�. Among all "-semigroups recognizing X,
there exists one which is minimal in the sense of division. It is called the syntactic
"-semigroup of X and is the first canonical object associated to rational sets on
linear orderings. For any "-semigroup (S, π) and any set P ⊆ S, the equivalence
relation ∼P is defined for any s,t in S by s ∼P t iff for any integer m:

∀s1, s2, . . . , sm, t1, t2, . . . , tm ∈ S1 , ∀θ1, θ2, . . . , θm−1 ∈ {ω,−ω} ∪ N ,

π(sm(. . . (s2(s1st1)θ1t2)θ2 . . .)θm−1tm) ∈ P

⇐⇒ π(sm(. . . (s2(s1tt1)θ1t2)θ2 . . .)θm−1tm) ∈ P

The equivalence relation ∼P is a congruence of "-semigroup. If S finite, then
and the quotient S/∼P is an effective "-semigroup.

If X is a recognizable subset of A�, then the quotient A�/∼X is finite and
recognizes X.

Proposition 1. Let X be a subset of A�. The set X is recognizable if and only
if the relation ∼X is a congruence of "-semigroup of finite index.

For any recognizable subset X of A�, the "-semigroup A�/∼X is called the
syntactic semigroup of X and is denoted by S(X). It is the smallest "-semigroup
recognizing X in the sense of division.

Proposition 2. Let X be a recognizable set of A� and let T be a "-semigroup.
Then T recognizes X if and only if S(X) divides T .

In particular, for any recognizable set X, the relation ∼X is the coarsest
congruence such that the quotient A�/∼X recognizes X. From Theorem 4 and
Proposition 2, it follows that the syntatic "-semigroup of a rational set is finite.

Theorem 6. A set of words indexed by countable scattered linear orderings is
rational iff its syntactic "-semigroup is finite.
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Abstract. We use formal language theory to estimate the Hausdorff
measure of sets of a certain shape in Cantor space. These sets are closely
related to infinite iterated function systems in fractal geometry.

Our results are used to provide a series of simple examples for the
non-coincidence of limit sets and attractors for infinite iterated function
systems.

There are a series of approaches which use means of formal language theory in
order to describe fractals. Another well-known approach for describing fractals
is via iterated function systems (IFS) (see [3]).

In the papers [15, 2, 5] a combination of IFS controlled by finite automata
was introduced for the description of a wider class of fractals. This leads to a
further extension by using arbitrary languages a control structures for IFS (see
[10]).

A different way of generalising IFS was pursued, e.g. in [9, 13, 14] where the
iterated function systems were allowed to contain infinitely many functions.

In this paper we consider infinite iterated function systems (IIFS) in Cantor
space, that is, in a space of infinite words over a finite alphabet. These IIFS are
of a special shape and can be identified with languages of finite words (cf. [20]).
As is known from [13] for IIFS limit sets and their closures (attractors) do not
coincide, in general. We aim at presenting different levels of non-coincidence for
our IIFS in Cantor space using Hausdorff dimension and Hausdorff measure.

It is well-known that the estimation of the Hausdorff dimension and, in par-
ticular, of the Hausdorff measure of even rather simply definable sets is already
a complicated task (cf. [6, 7]). It was shown in [19, 16, 10] that results from lan-
guage theory might facilitate this task. Here we derive results estimating Haus-
dorff measure for ω-power languages generated by prefix codes and use it to
provide simple examples of languages for the above mentioned non-coincidence
cases. The majority of the examples are also simple in the sense of language the-
ory, that is, they are products of one or two one-turn deterministic one-counter
languages (see [1]).

It should be mentioned that these results are not restricted to the Cantor
space of infinite words, as a direct translation of our results on IIFS to the
unit interval [0, 1] ⊆ IR can be obtained by considering an infinite word ξ ∈
{0, . . . , r − 1}ω as the r-ary expansion 0.ξ of a real number. As indicated in

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 393–405, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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[16], this translation generalises easily to unit cubes in d-dimensional space IRd.
Moreover, this translation preserves Hausdorff dimension and, up to a certain
linear bound, also Hausdorff measure.

1 Notation and Preliminary Results

Next we introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .}
we denote the set of natural numbers. Let X be an alphabet of cardinality
|X| = r. By X∗ we denote the set (monoid) of words on X, including the
empty word e, and Xω is the set of infinite sequences (ω-words) over X. For
w ∈ X∗ and η ∈ X∗ ∪Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω. For
a language W let W ∗ :=

⋃
i∈INW

i be the submonoid of X∗ generated by W ,
and by Wω := {w1 · · ·wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and A(B) is the set of all finite prefixes of strings in B ⊆ X∗ ∪Xω. We
shall abbreviate w ∈ A(η) (η ∈ X∗ ∪Xω) by w 3 η.

As usual, a language V ⊆ X∗ is called a code provided every word w ∈ V ∗

has a unique factorisation into words v1, . . . , vk ∈ V . If for arbitrary w, v ∈ V
the relation w 3 v implies w = v the language V is called prefix-free or a prefix
code. Further we denote by B/w := {η : w · η ∈ B} the left derivative of the set
B ⊆ X∗ ∪Xω.

For a language W ⊆ X∗ let sW : IN → IN where sW (n) := |W ∩Xn| be its
structure function. The structure generating function corresponding to sW is

sW (t) :=
∑

i∈IN
sW (i) · ti. (1)

sW is a power series with convergence radius radW :=
(
lim sup

n→∞
n
√

sW (n)
)−1. It

is convenient to consider sW also as a function mapping [0,∞) to [0,∞)∪ {∞}.
The convergence radius radW is closely related to the entropy of the language,

HW = lim supn→∞
logr(1+sW (n))

n (cf. [11, 19]).
The parameter t1(W ) := sup{t : t ≥ 0∧sW (t) ≤ 1} satisfies t1(W ) ≤ radW ∗.

Moreover, it fulfils the following (see [11, 19]).

Lemma 1. sW (t1(W )) = 1 iff sW (radW ) ≥ 1, and, if sW (radW ) < 1, then
t1(W ) = radW = radW ∗.

If W is a code then we have always radW ∗ = t1(W ).

We consider the set Xω as a metric space (Cantor space) (Xω, ρ) of all ω-
words over the alphabet X where the metric ρ is defined as follows.

ρ(ξ, η) := inf{r−|w| : w 
 ξ ∧ w 
 η} .

This space is compact, and the mapping φw(ξ) := w · ξ is a contracting
similitude if only w �= e. Thus a language W ⊆ X∗ \ {e} defines a possibly
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infinite IFS (IIFS) in (Xω, ρ). Moreover, C(F ) := {ξ : A(ξ) ⊆ A(F )} is the
closure of the set F (smallest closed subset containing F ) in (Xω, ρ).

Next we recall the definition of the Hausdorff dimension of a subset of (Xω, ρ)
(see [19, 23]). For F ⊆ Xω and 0 ≤ α ≤ the equation

ILα(F ) := lim
l→∞

inf
{ ∑

w∈W

r−α·|w| : F ⊆ W ·Xω ∧ ∀w(w ∈ W → |w| ≥ l)
}

(2)

defines the α-dimensional metric outer measure onXω. ILα satisfies the following.

Corollary 1. If ILα(F ) < ∞ then ILα+ε(F ) = 0 for all ε > 0.

Then the Hausdorff dimension of F is defined as

dimF := sup{α : α = 0 ∨ ILα(F ) = ∞} = inf{α : ILα(F ) = 0} .

It should be mentioned that dim is countably stable and shift invariant, that
is,

dim
⋃

i∈IN
Fi = sup{dimFi : i ∈ IN} and dimw · F = dimF .

We list some relations of the Hausdorff dimension and measure for ω-power
languages to the properties of the structure generation functions of the corre-
sponding languages (see [19, 16]).

Proposition 1. dimWω = − logr radW ∗

Proposition 2. If α = dimWω then ILα(Wω) ≤ 1.
If W is a regular language then 0 < ILα(Wω) ≤ ILα(C(Wω)) ≤ 1, and if W

is regular and a union of codes then ILα(Wω) = ILα(C(Wω)).

The following direct connections between sW and ILα(Wω) or dimWω are
helpful.

Proposition 3. 1. If sW (r−α) ≤ 1 then α ≥ dimWω.
2. If sW (r−α) < 1 then ILα(Wω) = 0.
3. If W is a code and sW (r−α) > 1 then α < dimWω.

2 The Hausdorff Measure of ω-Power Languages

As we have seen in Proposition 2 the Hausdorff measure ILα(Wω) varies between
0 and 1 when α = dimWω. In this section we give a more precise estimate, in
particular, we derive a formula the measure ILα(V ω) for prefix-free languages V .

To this end we mention the following known properties of the ω-power Wω.

(V ·W )ω = V · (W · V )ω (3)
(V ∪W )ω = (V ∗ ·W )ω ∪ (V ∪W )∗ · V ω (4)

These properties are called the rotation (Eq. (3)) and union splitting (Eq. (4))
properties, respectively.
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Lemma 2. Let w ∈ A(V ) \ V ·X ·X∗, that is, w 3 v for some v ∈ V but no
v′ ∈ V is a proper prefix of w, and let W := V ∩ w ·X∗ and V̂ := V \W . Then

V ω ∩ w ·Xω = W · V ω = W · (V̂ ∗ ·W )ω ∪W · V ∗ · V̂ ω and (5)
V ω/w = (V/w · V̂ ∗ · w)ω ∪ (V/w) · V ∗ · V̂ ω . (6)

Proof. In the first equation the first identity follows from the fact that every
w1 · w2 · · · ∈ V ω having w 3 w1 · w2 · · · has w1 ∈ W , and the second one is an
application of union splitting (see Eq. (4)) of (W ∪ V̂ )ω.

The second equation follows from the first one, the rotation property and the
observations that V/w = W/w and w · (V/w) = W . ��

We have the following identity.

Lemma 3. If V ⊆ X∗ is a code, α ≥ dimV ω, and w ∈ A(V ) \ V ·X ·X∗ then
ILα(V ω/w) = ILα

((
V/w · (V \ w ·X∗)∗ · w

)ω
)
. In particular, ILα(V ω/w) ≤ 1.

Proof. We use V̂ := V \ w ·X∗ as in Lemma 2.
Since V is a code, we have

∑
v∈V r−α|v| ≤ 1 for α ≥ dimV ω. Now V̂ ⊂ V

implies
∑

v∈V̂ r−α|v| < 1. Hence ILα(V̂ ω) = 0 and ILα((V/w) · V ∗ · V̂ ω) = 0.
Thus, the first assertion follows from Eq. (6), and then the second one from
Proposition 2. ��

We say that a language V ⊆ X∗ satisfies the countable intersection property
provided V ω is infinite and the set w ·V ω ∩ v ·V ω is at most countable for every
pair w, v ∈ V ,w �= v. It should be noted that every language V ⊆ X∗ satisfying
the countable intersection property is a code.

Theorem 1. Assume V ⊆ X∗ satisfies the countable intersection property,∑
v∈V

r−α|v| = 1 for some α, 0 < α ≤ 1, and
∑

w�v,v∈V

r−α|v| ≥ c · r−α|w| for

some word w ∈ A(V ) \ V ·X ·X∗. Then α = dimV ω and ILα(V ω) ≤ c−1.

Proof. α = dimV ω follows from Lemma 1 and Proposition 1.
SetW := V ∩w·X∗ and V̂ := V \w·X∗ as above and observe that

∑
v∈V̂

r−α|v| <

1. As V satisfies the countable intersection property, we have ILα(W · V ω) =∑
v∈W ILα(v · V ω) =

∑
w�v,v∈V r−α|v| · ILα(V ω).

On the other hand, using the identity W/w = V/w we obtain W · V ω =
w·(V ω/w) and from Lemma 3 the inequality ILα(W ·V ω) = r−α·|w|·ILα(V ω/w) ≤
r−α·|w|.

Thus ILα(V ω) ≤ r−α·|w| ·
(∑

w�v,v∈V r−α|v|)−1 ≥ c−1. ��

Letting the constant c in Theorem 1 tend to infinity (if possible) we obtain
the following.

Corollary 2. Assume V ⊆ X∗ satisfies the countable intersection property,∑
v∈V

r−α|v| = 1 for some α, 0 < α ≤ 1, and that for all k ∈ IN there is a word
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w ∈ A(V ) \ V ·X ·X∗ such that
∑

w�v,v∈V

r−α|v| ≥ k · r−α|w|. Then α = dimV ω

and ILα(V ω) = 0.

A converse to Theorem 1 can be proved for prefix codes.

Theorem 2. Let V ⊆ X∗ be a prefix code,
∑

v∈V

r−α|v| = 1 for some α, 0 < α ≤ 1,

and assume that there is a constant c > 0 such that
∑

w�v,v∈V

r−α|v| ≤ c · r−α|w|

for all w ∈ A(V ). Then α = dimV ω and ILα(V ω) ≥ c−1.

Proof. As above
∑

v∈V r−α|v| = 1 implies dimV ω = α because V is a code.
Since

∑
v∈V r−α|v| = 1, in case V is infinite we may choose a sequence of

natural numbers ln, n ∈ IN, such that for Vn := {v : v ∈ V ∧ |v| ≤ ln} we have
pn :=

∑
v∈Vn

r−α|v| ≥ 1 − r−(n+1). Then 1 ≥
∏∞

i=0 pi > 0. If V is finite, we
choose Vn := V for all n ∈ IN.

For technical reasons, we introduce the following concepts depending on the
sequence (ln)n∈IN:

W :=
∞⋃

i=0

i∏
n=0

Vn , and (7)

l(w) := min{i : ∃w′(w · w′ ∈
i∏

n=0

Vn)} for w ∈ A(W ) (8)

Thus l(w) = i for w ∈ V0 · · ·Vi. In order to use the mass distribution principle
([7–Principle 4.2]) we introduce a set function ν on balls w ·Xω with w ∈ W :

ν(w ·Xω) :=
l(w)∏
n=0

1
pn

· r−α|w|

Due to the choice of the coefficients pn we have the identity

∑
v∈Vl(w)+1

ν(w · v ·Xω) =
∑

v∈Vl(w)+1

l(wv)∏
n=0

1
pn

· r−α|wv|

= r−α|w| ·
l(w)∏
n=0

1
pn

·
∑

v∈Vl(w)+1

1
pl(w)+1

· r−α|v|

=
( l(w)∏

n=0

1
pn

)
· r−α|w| = ν(w ·Xω)

Letting ν(u · Xω) := 0 for u /∈ A(W ) we observe that ν is extendible to a
metric outer measure on Xω with support supp ν = V0 · V1 · · ·Vi · · · ⊆ V ω and
ν(supp ν) = 1 as follows:
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The inclusion ν(supp ν) ∩ w ·Xω ⊆
⋃
w�v

v∈V0···Vl(w)

v ·Xω ⊆ w ·Xω yields

ν(w ·Xω) =
∑

w�v,v∈V0···Vl(w)

ν(v ·Xω) for w ∈ A(W ) = A(supp ν).

Therefore, for F ⊆ w ·Xω with diamF = r−|w| we have ν(w ·Xω) = 0 or

ν(F ) ≤ ν(w ·Xω) ≤
∑
w�v

v∈V0···Vl(w)

l(w)∏
n=0

1
pn

· r−α|v| ≤
∞∏

n=0

1
pn

·
∑
w�v

v∈V0···Vl(w)

r−α|v|

Now, w ∈ A(W ) splits uniquely into the product w = v′ · w′ where v′ ∈∏l(w)−1
i=1 Vi and w′ ∈ A(V ) \ V. Consequently the inequality assumed in the

theorem implies∑
w�v

v∈V0···Vl(w)

r−α|v| = r−α|v′| ·
∑
w′�v

v∈Vl(w)

r−α|v| ≤ c · r−α|v′| · r−α|w′| = c · r−α|w| .

Thus, ν(F ) ≤
∏∞

n=0
c

pn
· (diamF )α for all F ⊆ Xω. So we can apply the mass

distribution principle of [7] to obtain ILα(V ω) ≥ ν(V ω)
c·∏∞

n=0 p−1
n

= 1
c ·

∞∏
n=0

pn > 0.

Since the choice of the sequence (ln)n∈IN is arbitrary, we can make
∏∞

n=0 pn

as close to 1 as possible, and the assertion Lα(V ω) ≥ 1
c follows. ��

Combining Theorems 1 and 2 we obtain the following.

Theorem 3. Let V ⊆ X∗ be a prefix code and
∑

v∈V r−α|v| = 1 for some
α, 0 < α ≤ 1. Then α = dimV ω and ILα(V ω) = inf{sV/w(r−α)−1 : w ∈ A(V )}.

Proof. Observe that sV/w(r−α) = rα·|w| ·
∑

w�v,v∈V

r−α|v| whenever w ∈ A(V ). ��

The next theorem gives a formula for the Hausdorff measure of the ω-power
of the product of two prefix codes. The product of two prefix codes is known to
be also a prefix code (see [4]).

Theorem 4. Let V,W ⊆ X∗ be prefix codes which satisfy dim(W · V )ω ≥
max{dimWω,dimV ω}. Then dim(W · V )ω = max{dimWω,dimV ω} and
ILα((W · V )ω) = min{ILα(Wω), ILα(V ω)} for α = dim(W · V )ω.

Proof. Since the product of W and V is unambiguous, we have sW ·V (t) =
sW (t) · sV (t). Let α′ ≥ max{dimWω,dimV ω}. This implies sW (r−α′

) ≤ 1 and
sV (r−α′

) ≤ 1 and, consequently, sW ·V (r−α′
) ≤ 1 whence α′ ≥ dim(W · V )ω.

This shows dim(W · V )ω ≤ max{dimWω,dimV ω}, hence the first assertion.
To show the second one we distinguish two cases. If sV (r−α) < 1 we have

sW ·V (r−α) = sW (r−α) · sV (r−α) < 1 and, consequently, ILα(V ω) = ILα((W ·
V )ω) == 0
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If sV (r−α) = 1 we use the relation

sW ·V/u(t) =
{

sV/v(t) , when u = w · v with w ∈ W and v ∈ A(V ) ,
sW/u(t) · sV (t) , if u ∈ A(W ) ,

for u ∈ A(W · V ). Then Theorem 3 yields the following estimate.

ILα((W · V )ω) = inf{sW ·V/u(r−α)−1 : u ∈ A(W · V )}

= min{inf{ 1
sW/w(r−α)

: w ∈ A(W )}, inf{ 1
sV/v(r−α)

: v ∈ A(V )}}

= min{ILα(Wω), ILα(V ω)} ��

3 Construction of Prefix Codes from Languages

In this section we derive our examples which show that limit sets and their clo-
sures (attractors) for IIFS in Cantor space do not coincide. We present different
levels of non-coincidence using Hausdorff dimension and Hausdorff measure.

We intend to find simple examples for these levels of non-coincidence. Sim-
plicity here means, on the one hand that our examples are prefix codes, which
makes the IIFS simple, and on the other hand, as indicated above, we try to
choose them in low classes of the Chomsky hierarchy, preferably linear context-
free languages.

3.1 Limit Set and Attractor

The limit set in Cantor space of an IIFS described by a language L ⊆ X∗ \ {e}
is Lω. It is also the largest solution (fixed point) of the equation F = L ·F when
F ⊆ Xω (see [22]). The attractor of the IIFS is C(Lω). Using the ls -limit (or
adherence) of [12] (see also [21]) we can describe the difference C(Lω) \Lω more
precisely.

Set ls L := {ξ : ξ ∈ Xω ∧ A(ξ) ⊆ A(L)}, for L ⊆ X∗. Then (see [12, 21])

C(Lω) = ls L∗ = Lω ∪ L∗ · ls L (9)

This yields dim C(Lω) = max{dimLω,dim ls L}. For prefix codes L we have
additionally the following identity (see [23]).

ILα(C(Lω)) = ILα(Lω) +
∑

i∈IN
sL(r−α)i · ILα(ls L) (10)

If ILα(Lω) > 0 then sL(r−α) ≥ 1. Consequently,

ILα(C(Lω)) =
{

ILα(Lω) , if ILα(ls L) = 0 , and
∞ , otherwise. (11)

If sL(r−α′
) < 1 then ILα′(Lω) = 0. In this case Eq. (10) shows that ILα′(C(Lω))

is zero, non-null finite or infinite according to whether ILα′(ls L) is zero, non-
null finite or infinite, respectively. The condition sL(r−α′

) < 1 is fulfilled, in
particular, if dimLω < α′.



400 L. Staiger

3.2 The Padding Construction

Let W ⊆ (X \ {d})∗ where d is a letter in X. Define for an injective function
f : IN → IN satisfying f(n) > n when sW (n) > 0

L := {w · df(|w|)−|w| : w ∈ W} . (12)

Then L is a prefix code, sL(t) =
∑

n≥0 sW (n) · tf(n). Because f is injective
and sL(i) > 0 implies that i = f(j) for some j ∈ IN we have

(radW )
lim inf
n→∞

n
f(n) ≥ radL = lim inf

n→∞
1

f(n)
√

sW (n)
≥ (radW )

lim sup
n→∞

n
f(n)

. (13)

If lim
n→∞

n
√

sW (n) exists then we have radL = (radW )
lim sup
n→∞

n
f(n) .

Since C(Lω) = Lω whenever L is finite, we are interested only in infinite
languages W,L ⊆ X∗. Thus 0 < 1

|X|−1 ≤ radW ≤ radL ≤ 1.
Consider the identity sL(t) =

∑
n≥0 sW (n) · tf(n) =

∑
n≥0 sW (n) · tγ·n ·

tf(n)−γ·n . Since 0 ≤ t ≤ radL ≤ 1, we get the following relations between
the parameters of the languages L and W .

sL(t) ≤ sW (tγ) for 0 ≤ t ≤ γ
√

radW ,

radL ≥ γ
√

radW and
radL∗ = t1(L) ≥ γ

√
t1(W )

if f(n) ≥ γ · n . (14)

Moreover, Eq. (13) implies that radL = γ
√

radW whenever γ = lim
n→∞

f(n)
n ,

and if f(n) = γ · n for sW (n) > 0 we have, in addition, sL(t) = sW (tγ) and
t1(L) = γ

√
t1(W ). It should be mentioned, however, that γ = lim

n→∞
f(n)

n does

not imply t1(L) = γ
√

t1(W ) (see Example 8).
In order to apply Theorem 3 we are interested in connections between sL/w

and sW/w for w ∈ A(W ).

Lemma 4. Let W ⊆ (X \{d})∗, f(n) ≥ γ ·n for sW (n) > 0. If w ∈ A(W ) then
sL/w(t) ≤ sW/w(tγ) for 0 ≤ t ≤ γ

√
radW .

If, moreover, W is a regular language then there is a k ∈ IN such that
sL/w(t) ≤ sW/w(tγ) ≤ t−γ·k · sW (tγ) for 0 ≤ t ≤ γ

√
radW .

If w /∈ A(W ) then sL/w(t) ≤ 1 for 0 ≤ t ≤ 1.

Proof. Let w ∈ A(W ). We consider the identity L/w =
⋃

wu∈W

u · df(|wu|)−|wu|.

From this we obtain

sL/w(t) =
∑
n∈IN

sW/w(n) · tf(|w|+n)−|w| =
∑
n∈IN

sW/w(n) · tγ·n · tf(|w|+n)−|w|−γ·n ,

whence sL/w(t) ≤ sW/w(tγ) if f(n) ≥ γ · n for sW (n) > 0, and the first assertion
is proved.



On the Hausdorff Measure of ω-Power Languages 401

To show the next one, observe that t|w| · sW/w(t′) ≤ sW (t′) whenever 0 ≤ t′.
If W is regular, there is a constant k ∈ IN such that for every w ∈ X∗ there is a
ŵ, |ŵ| ≤ k with W/w = W/ŵ.

The last assertion is obvious. ��
With Theorem 3 we obtain the following.

Corollary 3. If W ⊆ (X \{d})∗ is a regular language, f(n) ≥ γ ·n for sW (n) >
0, t1(L) ≤ γ

√
radW and sL(t1(L)) = 1 then dimLω = − log t1(L) and ILα(Lω) >

0 for α = dimLω.

If we change the order in the construction of Eq. (12) we obtain for d̃ ∈ X
and W ⊆ (X \ {d̃})∗

L̃ := {d̃f(|w|)−|w| · w : w ∈ W} , (15)

and the results on the structure generating function Eqs. (13) and (14) remain
valid. In particular, L̃ is also a prefix code. Moreover we have a lower bound for
sL̃/w.

Proposition 4. If w = d̃f(n) then sL̃/w(t) ≥ sW (n) · tn.

This enables us to apply Theorem 3.

Corollary 4. Let W ⊆ (X \ {d̃})∗, f : IN → IN injective and f(n) > n for
sW (n) > 0. If L̃ = {d̃f(|w|)−|w| ·w : w ∈ W} and t1(L) > radW then ILα(L̃) = 0
for α = dim L̃.

It should be mentioned that for linear functions f : IN → IN, f(n) = γ ·n+ δ
with rational coefficients, and regular languages W the resulting languages L and
L̃ are one-turn deterministic one-counter languages. These have rational struc-
ture generating functions sL and sL̃ respectively, which implies that sL(radL) =
sL̃(rad L̃) = ∞ whence sL(t1(L)) = sL̃(t1(L̃)) = 1 (see [11]).

3.3 Examples

In this section we give our announced examples. Here we consider the following
cases which might appear for α = dimLω and α̂ = dim C(Lω), ILα(Lω) and
ILα̂(C(Lω)). The principal possibilities are shown in the figure below. The case
ILα(Lω) = ∞ is excluded by Proposition 2.

We consider only prefix codes L. In this case Proposition 3.2 and Eq. (10)
give some principal limitations.

Proposition 5. Let L ⊆ X∗ be a prefix code and let 0 < ILα′(lsL) < ∞. If
sL(r−α′

) < 1 then ILα′(C(Lω)) < ∞, and if ILα′(Lω) > 0 then ILα′(C(Lω)) = ∞.

Proof. The first assertion is obvious, and the second follows from Eq. (10) and
the fact that ILα′(Lω) > 0 implies sL(r−α′

) = 1. ��
Thus Case 4 is not possible for prefix codes L, and in order to achieve the

identity ILα̂(C(Lω)) = ∞ one must have ILα̂(ls L) = ∞ or, in case α = α̂,
ILα(ls L) > 0 and sL(r−α) = 1.
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fixed point Lω attractor C(Lω) Example
α = dimLω α̂ = dim C(Lω)

Dimension α = α̂ and dim ls L ≤ α

1. ILα(Lω) = 0 ILα(C(Lω)) = 0 Example 1
2. ILα(Lω) > 0 ILα(C(Lω)) = ILα(Lω) Proposition 2
3. ILα(Lω) = 0 0 < ILα(C(Lω)) < ∞ Example 8
4. ILα(Lω) > 0 ILα(Lω) < ILα(C(Lω)) < ∞ not possible
5. ILα(Lω) = 0 ILα(C(Lω)) = ∞ Example 5
6. ILα(Lω) > 0 ILα(C(Lω)) = ∞ Example 2

Dimension α < α̂ and dim ls L = α̂

7. ILα(Lω) = 0 ILα̂(C(Lω)) = 0 Example 10
8. ILα(Lω) > 0 ILα̂(C(Lω)) = 0 Example 9
9. ILα(Lω) = 0 0 < ILα̂(C(Lω)) < ∞ Example 61

10. ILα(Lω) > 0 0 < ILα̂(C(Lω)) < ∞ Example 3
11. ILα(Lω) = 0 ILα̂(C(Lω)) = ∞ Example 7
12. ILα(Lω) > 0 ILα̂(C(Lω)) = ∞ Example 4

Let X consist of the four letters a, b, d and d̃. We arrange our examples
according to increasing complexity. All examples, except for Example 8, have
f(n) = γ · n.

In the first seven examples we use the regular languages W (1) := {a, b}∗\{e},
W (2) := ({a, b} · a)∗ \ {e} and W (3) := {a, b}∗ · d̃ · {a, b}∗ with the parameters:

sW (1)(t) = 2t
1−2t , t1(W (1)) = 1

4 and IL 1
2
(ls W (1)) = 1

sW (2)(t) = 2t2

1−2t2 , t1(W (2)) = 1
2 and IL 1

4
(ls W (2)) = 1

sW (3)(t) = t
(1−2t)2 , t1(W (3)) = 1

4 and IL 1
2
(ls W (3)) = ∞

The first four examples are linear languages, and in Examples 2, 3 and 4 we
use the construction of Eq. (12) and Corollary 3 to show that ILα(Lω) > 0.

Example 1. Set W1 := W (1), γ1 := 4 and use the construction of Eq. (15).
Eq. (14) shows t1(L1) = 1√

2
> radW1 = 1

2 . Since ls L1 = {d̃}ω, we have
ILα(C(Lω

1)) = ILα(Lω
1), and Corollary 4 yields ILα(Lω

1) = 0. ��

Example 2. We set W2 := W (1) and γ2 := 2. Then dimLω
2 = − log4 t1(L2) = 1

2
and sL2(t1(L2)) = 1. Now, Proposition 5 implies ILα(C(Lω

2)) = ∞. ��

Example 3. We use W3 := W (1) and γ3 := 4. Then dimLω
3 = 1

4 , α̂ = dim ls L =
1
2 , sL3(4−α̂) = sW3( 1

16 ) = 1
7 and, finally, ILα(C(Lω

3)) = 7
6 . ��

Example 4. SetW4 := W (3) and γ4 := 4. This yields α = dimLω
4 = − log4 t1(L4)

= 1
4 and α̂ = dim ls L4 = 1

2 and ILα̂(ls L4) = ∞ (cf Example B of [16]). ��

1 An example of a language generated by a simple context-free grammar was given in
Example 6.3 of [19].
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The next three examples and Example 10 are products of languages L′i and
L̃i constructed according to Eqs. (12) and (15), respectively. Then we can use
Theorem 4 to show that ILα((L′i · L̃i)ω) = 0. Since ls L̃i = {d̃}ω, we have
ILα′(ls (L′i · L̃i)) = ILα′(ls L′i) for α′ > 0.

Example 5. Define L′5 using Eq. (12) and the parameters W ′
5 := W (2) and γ′ :=

2. This yields t1(L′5) = 1√
2

and α = dimL′ω5 = 1
4 . Now L̃5 := L1 has also

dim L̃ω
5 = 1

4 and, consequently, IL 1
4
((L′5 · L̃5)ω) = 0.

Finally, ILα(ls (L′5 · L̃5)) = ILα(ls L′5) = 1 and sL′
5
(4−α) = sL̃5

(4−α) = 1

yield ILα(C((L′5 · L̃5)ω)) = ∞. ��

Example 6. Here we use L′6 := L3 and L̃′6 := L1 and argue in the same way as
in the preceding example.

Example 7. This example uses the language L′7 := L4 and concatenates it with
L̃7 := L1. ��

Because of ILα(Lω) = 0 and ∞ > ILα(ls L) > 0 Item 3 requires sL(radL) <
1. This is not possible with languages having a rational structure generating
function.

Example 8. SetW := {a, b, d̃}∗\{e} and f(n) := n+2-
√
n.. We obtain sL(rad L)

= 5
32 < 1, and consequently 0 = ILα(Lω) < ILα(C(Lω)) = 32

27 < ∞ for α :=
dimLω = dim ls L = log4 3. ��

In view of α < α̂ and ILα̂(C(Lω
i )) = 0 the final two examples require ILα̂(ls L) =

0. Following Lemma 4.3 of [19] ls L cannot be a regular ω-language and, as the
considerations in [12, 16] show, therefore L cannot be a linear language.

Example 9. Let F := {a, b} ·
∏∞

i=0({a, b}2i−1 · a) and set W9 := A(F ) \ {e}.
Then sW (n) = 2n−�log2 n� for n > 0.

Since F is closed in (Xω, ρ) and sA(F/w)(n) = sA(F/v)(n) whenever w, v ∈
A(F ) and |w| = |v|, Theorem 4 of [18] shows dimF = lim inf

n→∞
log4 sA(F )(n)

n = 1
2 .

Moreover, it is easy to calculate that IL1/2(F ) = 0.
Choose γ9 = 3 and use the construction of Eq. (12). Then ls L9 = F ,

−ln(1 − 2t3) =
∞∑

i=1

(2t3)n

n
< sL9(t) < 2 ·

∞∑
i=1

(2t3)n

n
− 2t3 = −2(ln(1 − 2t3) + t3)

for 0 < t ≤ 1
3√2

, and we obtain sL9( 1
3√4

) < 1 < sL9( 1
3√3

) < ∞. Therefore,
sL9(t1(L9)) = 1 and α = dimLω

9 = − log t1(L9) < 1
2 . This allows us to show

ILα(Lω) > 0 using Theorem 3 in the following way: We have
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sL9/w(t) = t2|w| ·
∞∑

i=1

sW9(n+ |w|)
sW9(|w|) t3n

= t2|w| ·
∞∑

i=1

2n−log2(n+|w|)+log2 |w| · t3n ≤ t2|w| · |w| · sL(t) ,

for w ∈ A(W9), w �= e. Hence sL9/w(t) ≤ 1 for 0 ≤ t ≤ 1
3√3

. ��

Example 10. Let L′10 := L9 and let L̃10 be constructed according to Eq. (15)
with W̃10 := W9 and γ̃10 := γ9 = 3.

Arguing in the same way as in Examples 1 and 5 we calculate that Corollary 4
is applicable and obtain α = dim(L′10 ·L̃10)ω < α̂ = 1

2 , and ILα((L′10 ·L̃10)ω) = 0
as well as ILα̂(C((L′10 · L̃10)ω)) = ILα̂(C(L′ω10)) = 0 . ��
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Deterministic Tabled Picture Languages
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Abstract. Chain code picture systems based on Lindenmayer systems
can be used to generate pictures. In this paper, synchronous, determinis-
tic tabled chain code picture systems (sDT0L systems) and their picture
languages are considered. A method is given for deciding whether an
sDT0L system generates a finite picture language or not. This proves
that the finiteness of picture languages of sDT0L systems is decidable.

1 Introduction

Chain code picture systems provide a possibility for describing pictures. They are
based on generating words over a special alphabet and interpreting these words
as pictures. H. Freeman introduced chain code picture languages ([Fr61]). A
picture is formed by a sequence of drawing commands represented by symbols
(letters). A string describes a picture, which is built by the drawing commands
of its letters. Freeman uses the alphabet { 0, . . . , 7 }, whose elements are inter-
preted according to the following sketch.

�0

�
�

��1

�2
�

�
��

3

�
4

�
�

�	
5



6

�
�

��
7

The picture to the right, for example, is gen-
erated by the word 2012 331 577 00 250 67 32
0 670 26 1223 62 456 73 1:
(The drawing ‘starts’ at the circle.)

�

For language theoretical investigations, only the four directions 0, 2, 4, 6 are
considered [DH89]. The directions right, up, left, down are written as r, u, l, d.
The connection of strings and pictures suggests to search for relations between
formal languages and picture sets. The first paper in that topic is [Fe68]. Chain
code picture languages based on the Chomsky-hierarchy have been investigated
since the 1980s ([MRW82], [SW85]). However, hardly any theoretical investiga-
tions on Lindenmayer-based chain code picture languages have been carried
out so far ([DHr92]). Following the paper [DHr92], it occurred that there are
so called length constant systems with a finite picture language as well as such
with an infinite one. This is contrary to a statement in [DHr92].

C.S. Calude, E. Calude and M.J. Dinneen (Eds.): DLT 2004, LNCS 3340, pp. 406–417, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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According to [RS80], context-free Lindenmayer systems are divided up in
D0L systems (deterministic rewriting of letters), 0L systems (rewriting non-
deterministically), DT0L systems (selecting a replacement table non-determi-
nistically, rewriting deterministically), and T0L systems (selecting a replacement
table non-deterministically, rewriting non-deterministically).

In [T02] and [T03], the finiteness of the picture languages of special systems
– synchronous D0L systems and synchronous 0L systems (sD0L systems, s0L
systems) – is proved to be decidable. The present paper follows [T02] and [T03];
the decidability of the finiteness of chain code picture languages of synchronous,
deterministic tabled, context-free Lindenmayer systems (sDT0L systems) is
investigated and proved.

2 Fundamentals

The finiteness investigations on picture languages of sDT0L systems in this paper
are based on the hierarchy of abstractions developed in [T02]. In this section,
the fundamental notations are gathered.

2.1 Structures Over an Alphabet

Let A = { r, l, u, d } be an alphabet and (A∗, ·) be the free structure over A with
the operation of concatenation. The empty word is denoted by λ, the set of all
words without λ is denoted by A+, the set of all finite, non-empty subsets of
A∗ is denoted by A. The set A with the operations ∪ (union) and · (concatena-
tion) forms a semiring (A,∪, ·) because (A,∪) and (A, ·) are semigroups and the
distributive laws are valid.

The set of the natural numbers containing 0 is denoted by N0. All words w
of the length |w| = n (n ∈ N0) form the set An. A word w ∈ An is composed
of letters w1, . . . , wn. In this context, −→wi is the word −→wi = w1 · · ·wi (0 <− i <− n,
−→w0 = λ). The number |w|x is the number of occurrences of the letter x in the
word w. The set of all letters occurring in w is shortly written as [w]:

[w] = { x | |w|x >− 1 } .

The elements of A∗ can be interpreted as mappings on Z2. The empty word
corresponds to the identity mapping. The atomic mappings r, l, u, d assign, to
a point q ∈ Z2, its neighbours:

r(q) = q + (1, 0), l(q) = q − (1, 0),
u(q) = q + (0, 1), d(q) = q − (0, 1).

The function names r, l, u, d are taken from the directions right, left, up,
down. A compound word vw ∈ A∗ stands for the composed mapping v ◦ w:

v ◦ w : Z2 −→ Z2 with q 
→ w(v(q)).

The zero point of Z2 is denoted by o = (0, 0). The translation of any point
q ∈ Z2 to its neighbour x(q) (x ∈ A) is denoted by vx ∈ Z2: vx = x(q) − q.
Consequently, vr = (1, 0), vl = −(1, 0), vu = (0, 1), vd = −(0, 1).
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The interpretation of words as mappings on Z2 is a homomorphism from the
free structure (A∗, ·) into the free structure (A∗, ◦). The operator ◦ does not
need to be written if the context shows which operation is meant.

The mappings r and l as well as u and d are inverse to each other. The
mappings ru and ur as well as ld and dl assign, to a point p, its diagonal
neighbours:

ru(q) = ur(q) = q + (1, 1), ld(q) = dl(q) = q − (1, 1).

The mapping which leads, together with a mapping x, to
a diagonal neighbour is denoted by x⊥. The inverse map-
pings of two mappings x and x⊥ are denoted by x̄ and x̄⊥

respectively. The table to the right shows the corresponding
mappings.

x x̄ x⊥ x̄⊥

r l u d
l r d u
u d r l
d u l r

2.2 Graphical Embedding

A lattice graph is a graph with the following properties: the vertex set is a subset
of Z2, and each edge is incident to two neighbours q and x(q) with q ∈ Z2 and
x ∈ { r, l, u, d }.

In [T02], we define functions that assign to each word w ∈ An and a start
point a ∈ Z2

– the vertex set 4a(w) = { −→wi(a) | i = 0, . . . n },
– the directed lattice graph (possibly with multiple edges)

ga(w) =
(
4a(w), { (−−→wi−1(a),−→wi(a)) }i=1,...,n

)
,

– the simple, directed lattice graph sa(w) of ga(w) (without multiple edges)

sa(w) = (4a(w), { (−−→wi−1(a),−→wi(a)) | i = 1, . . . , n }) ,
– the edge set ‖aw of sa(w)

‖aw = { (−−→wi−1(a), wi) | i = 1, . . . , n } ,
where an edge is described by a pair of a start point and a direction rather
than a pair of start and end points (the set of all x-edges is denoted by ‖a

xw),
– the picture (the shadow of sa(w))

pa(w) = (4a(w), { (−−→wi−1(a),−→wi(a)), (−→wi(a),−−→wi−1(a)) | i = 1, . . . , n })
– and the picture area

�a(w) =

{
(x, y)

∣∣∣∣∣ xa(w) <− x <− xa(w) and
ya(w) <− y <− ya(w)

}
,

xa(w), ya(w), xa(w), and ya(w) being the border coordinates of the vertices
of 4a(w):

xa(w) = min { x | (x, y) ∈ 4a(w) } , ya(w) = min { y | (x, y) ∈ 4a(w) } ,
xa(w) = max { x | (x, y) ∈ 4a(w) } , ya(w) = max { y | (x, y) ∈ 4a(w) } .
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The upper index will be omitted if the mappings relate to the zero point (a = o).
The picture areas are rectangle sets. A rectangle set P is determined by two

points, the ‘lower left corner’ aP and the ‘upper right corner’ cP

or the ‘upper left corner’ dP and the ‘lower right corner’ bP. The
notation for a rectangle set is [aP, cP]. The following descriptions
are equivalent: [aP, cP], [cP, aP], [dP, bP], [bP, dP]. � �

��

�

aP bP

dP cP

Scaling of a picture area P = [p, q] by a factor s ∈ N0 produces the picture
area

sP = { sx | x ∈ P } = [sp, sq].

The union of two picture areas is not a rectangle set in general. An extended
union of two picture areas is the picture area of the union:

PX � PY = PX∪Y .

2.3 Special Endomorphisms

Let κ, μ be two natural numbers, κ, μ ∈ N0. An endomorphism h on the semiring
(A,∪, ·) is called a (κ, μ)-endomorphism on the semiring (A,∪, ·) if, for all x ∈ A,
the following conditions (called synchronization conditions) are satisfied:

If x′ ∈ h({ x }), then

1. x′(o) = κvx and
2. �(x′) ⊂− κ[o, vx] � μ[vx⊥ , vx̄⊥ ].

Applying h to a set of words W is called deriving; the set h(W ) is obtained in
one derivation step. Every element of h({ w }) is called a derivative of the word w.
The parameter κ is a factor of the length changing in one derivation step; the
parameter μ is an upper bound of the width changing in one derivation step. For
example, if r′ is a derivative of r, then the picture corresponding to r′ starting
at the origin has its end point at (κ, 0) and fits into the rectangle with corners
(0,−μ) and (κ, μ). If u′ is a derivative of u, then the picture corresponding to
u′ starting at the origin has its end point at (0, κ) and fits into the rectangle
with corners (−μ, 0) and (μ, κ). In the case of κ = 0, the endomorphism is called
length contracting, in the case of κ = 1, length constant and in the case κ > 1,
length expanding. A derivative of a picture (the picture of the derivation of
the underlying word) has the same proportions as the picture itself (the ‘shape’
remains the same). This can be seen immediatly if κ is much greater than μ. Since
the picture sizes increase in all directions equally, we speak of synchronization.

The n-ary composition of a (κ, μ)-endomorphism h is shortly written as hn.
Every element of hn({ w }), w ∈ A∗, is called an n-th derivative of w.

Let w be a word of An. Then, h({ w }) is composed of h({ w1 }), . . . , h({ wn }):
h({ w }) = h({ w1 · · ·wn }) = h({ w1 } · · · { wn }) = h({ w1 }) · · ·h({ wn }).
For a finite word set W ∈ A, the invariance of h with respect to union implies

h(W ) =
⋃

w∈W

h({ w }).
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Let μ0 ∈ N0 be a natural number. For any natural number μ >− μ0, the picture
area μ0[vx⊥ , vx̄⊥ ] is a subset of μ[vx⊥ , vx̄⊥ ].

Proposition 1. Each (κ, μ)-endomorphism is also a (κ, μ+ 1)-endomorphism.

If all atomic values of a (κ, μ)-endomorphism h have only one element, then
each word has exactly one derivative; the set signs are omitted in that case:
h(w) = w′.

2.4 Chain Code Picture Systems

An sDT0L system is a triple

G = (A, h, ω)

with the alphabet A = { r, l, u, d }, a non-empty word ω over A (referred to
as the axiom), and a finite, non-empty set h = { h1, . . . , hm } where each hi,
i = 1, . . . ,m, is a (κi, μi)-endomorphism and hi({ x }) is a singleton set for any
x ∈ A.

The set of all n-ary compositions of elements of h is denoted by hn

hn = { hi1 ◦ · · · ◦ hin
| ij ∈ { 1, . . . ,m } ; j = 1, . . . , n } ;

applying all those compositions to a set of words W yields the set

hn(W ) =
{
h(n)(w) | h(n) ∈ hn,w ∈ W

}
.

The picture language PG generated by an sDT0L system G is defined to be
the set of all pictures of derivatives of the axiom ω:

PG = { p(w) | w ∈ hn({ ω }), n ∈ N0 } .
An sDT0L system is called length expanding if at least one (κi, μi)-endomor-

phism hi ∈ h has this property. An sDT0L system is called length contracting if
all endomorphisms of h are length contracting. In the other cases, at least one
endomorphisms of h is length constant while the others are length contracting.
Hence, the maximum length of the picture of an atomic derivative stays constant.
Those sDT0L systems are called length constant.

Let G be an sDT0L system. If there are two natural numbers κ, μ such that
all endomorphisms of G are (κ, μ)-endomorphisms, G is said to be pure otherwise
G is said to be mixed.

A sD0L system is an sDT0L system with only one endomorphism ([T02]). In
order to use results about sD0L systems, deterministic subsystems are defined
below. An sD0L system U = (A, h◦, ω) is called a deterministic subsystem of an
sDT0L system G = (A, h, ω) (written U �− G) if each derivative of any w ∈ A∗
with respect to U is also a derivative with respect to G:

U �− G ⇐⇒ ∀w ∈ A∗ : h◦(w) ∈ h({ w }).

Proposition 2. An sDT0L system G = (A, h, ω) with h = { h1, . . . , hm } has
exactly the deterministic subsystems Ui = (A, hi, ω) for i = 1, . . . ,m.
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A deterministic subsystem Ui = (A, hi, ω) of an sDT0L system generates the
picture language

PUi
= { p(hn

i (ω)) | n ∈ N0 } .
The following proposition follows immediately from the definitions.

Proposition 3. The picture language generated by a deterministic subsystem
of an sDT0L system G is a subset of the picture language generated by G.

An s0L system is similar to an sD0L system, but with an arbitrary (κ, μ)-
endomorphism ([T03]). In order to use results about s0L systems, simple non-
deterministic supersystems are defined below. An s0L system S = (A, h◦, ω) is
called a simple non-deterministic supersystem (shortly s0L supersystem) of an
sDT0L system G = (A, { h1, . . . , hm } , ω) (written S �− G) if each derivative of a
word w ∈ A∗ with respect to G is also a derivative with respect to S. Hence, h◦
must satisfy h◦({ x }) ⊃− { h1(x), . . . , hm(x) } for any x ∈ A. An s0L supersystem
S �− G is said to be minimal in the case of equality.

Lemma 1. Let G = (A, { h1, . . . , hm } , ω) be an sDT0L system. It has an s0L
supersystem if and only if G is a pure sDT0L system.

The following proposition follows from the definitions.

Proposition 4. In the case that an sDT0L system G has an s0L supersystem,
the picture language PG generated by G is a subset of the picture language PS

generated by the minimal s0L supersystem S of G.

3 Finiteness Investigations

In this section, conditions are derived for deciding whether an sDT0L system
generates a finite picture language or not.

3.1 Length Contracting Systems

Let G = (A, h, ω) be a length contracting sDT0L system with a finite, non-empty
set h = { h1, . . . , hm } of (0, μi)-endomorphisms hi. Let μ be the maximum of
all μi: μ = max { μi | i = 1, . . . ,m }. According to Proposition 1, every hi is also
a (0, μ)-endomorphism.

The minimal s0L supersystem S = (A, h◦, ω) of G is a length contracting
s0L system and its endomorphism h◦ is also a (0, μ)-endomorphism. According
to Theorem 3.1 of [T03], the picture language PS contains (μ+ 1)4 + 1 elements
at most. Following Lemma 1, also PG has (μ+ 1)4 + 1 elements at most.

Theorem 1. Any length contracting sDT0L system G = (A, { h1, . . . , hm } , ω)
with (0, μ)-endomorphisms hi (i = 1, . . . ,m) generates a finite picture language
PG with (μ+ 1)4 + 1 elements at most:

|PG| <− (μ+ 1)4 + 1 < ∞.
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3.2 Length Expanding Systems

Let G = (A, h, ω) be a length expanding sDT0L system with h = { h1, . . . , hm }.
Since G is length expanding, one of the endomorphisms hi is length expanding.
Hence, a deterministic subsystem U = (A, hi, ω) is length expanding. In [T02] is
shown that the picture language of any length expanding sD0L system is infinite.
Since the picture language generated by U is a subset of the picture language
generated by G (Proposition 3), also the picture language of G is infinite.

Theorem 2. Every length expanding sDT0L system generates an infinite pic-
ture language.

3.3 Length Constant Systems

Length constant sD0L systems can genrate finite or infinite picture languages
([T02]). They are special length constant sDT0L systems. Hence, also length
constant sDT0L systems can genrate finite or infinite picture languages.

As some examples show, the criterion for decision derived in [T02] for sD0L
systems and in [T03] for s0L systems is not applicable to sDT0L systems. In order
to find a criterion for sDT0L systems, pure and mixed systems are considered
seperately.

Pure Length Constant Systems. Let G = (A, h, ω) be an sDT0L system
with h = { h1, . . . , hm } being a set of (1, μ)-endomorphisms hi. According to
Lemma 1, the sDT0L system G has a minimal s0L supersystem S = (A, hS , ω)
where hS({ x }) = { h1(x), . . . , hm(x) } for all letters x ∈ A.

According to Proposition 4, the picture language PG generated by G is a
subset of the picture language PS generated by S.

Proposition 5. The picture language of a pure, length constant sDT0L system
is finite if the picture language of its minimal s0L supersystem is finite.

In the sequel, let G be such an sDT0L system that its minimal s0L super-
system S generates an infinite picture language. Following [T03], S has a deter-
ministic subsystem U = (A, hU , ω) also generating an infinite picture language.
For any x ∈ A, one has hU (x) ∈ hS({ x }). Hence, each x ∈ A has an index
ix ∈ { 1, . . . ,m } such that hU (x) = hix

(x). Because the picture language PU

generated by U is infinite, there is a letter x ∈ [h2
U (ω)] such that one of the edge

sets ‖hU (x), ‖h2
U (x), ‖h3

U (x) contains an x-edge different from (o, x) (proved in
[T02]):

∃x ∈ [h2
U (ω)]∃l ∈ { 1, 2, 3 } : ‖xx �= ‖xh

l
U (x).

Under this condition, one can show that also PG is infinite (sDT0L systems
are given that generate infinite picture languages but subsets of PG).

Proposition 6. The picture language of a pure, length constant sDT0L system
G is infinite if the picture language of its minimal s0L supersystem S �− G is
infinite.
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Propositions 5 and 6 lead to the following result.

Theorem 3. Let G = (A, h, ω) be a pure, length constant sDT0L system. The
picture language generated is finite if and only if the minimal s0L supersystem
of G generates a finite picture language.

Mixed Length Constant Systems. In the sequel, mixed length constant
sDT0L systems are considered. Those systems contain at least one (0, μ)-en-
domorphism and at least one (1, μ)-endomorphism. Let G = (A, h, ω) be an
sDT0L system with a set h = g ∪ f of length contracting and length constant
endomorphisms. The length contracting endomorphisms are gathered in the set
g = { g1, . . . , gm0 }, the length constant ones are gathered in f = { f1, . . . , fm1 }.
The system (A, f, ω) is the maximal pure length constant subsystem of G and
is referred to as the 1-system of G.

Proposition 7. Let T be the 1-system of G. Then, PT is a subset of PG.

From this inclusion, one concludes immediately the next one.

Proposition 8. Let G be an sDT0L system and T be its 1-system. If T generates
an infinite picture language, also the picture language of G is infinite.

If the picture language of T is finite, however, the picture language of G is
not necessarily finite. But then, a letter x ∈ A exists which is not produced by
the system T but leads to the infinity of the picture language of G. By examining
the possibilities of a letter to be produced, one can prove the following lemma.

Lemma 2. Any letter produced by G also occurs in a second derivative.

If T = (A, f, ω) is the 1-system of G, any sDT0L system Tx = (A, f, x) is
called an x-1-system if x ∈ [h2({ ω })] is a letter occurring in a second derivative.
It will be proved that the sDT0L system G generates an infinite picture language
if and only if an x-1-system of G has an infinite picture language.

Let ω′′ = x̂xx̃ ∈ h2({ ω }) be a second derivative of the axiom. The x-1-system
generates the picture language

Px = { p(w) | w ∈ fn({ x }), n ∈ N0 } =
{
p(f (n)(x))

∣∣∣ n ∈ N0, f
(n) ∈ fn

}
.

Let Pω′′ be the picture language of the system (A, f, ω′′):

Pω′′ = { p(w) | w ∈ fn({ ω′′ }), n ∈ N0 } =
{
p(f (n)(ω′′))

∣∣∣ n ∈ N0, f
(n) ∈ fn

}
.

Because ω′′ ∈ h2({ ω }) is a second derivative of the axiom and fn ⊂− hn for
any derivation step n ∈ N0, every n-th derivative w ∈ fn({ ω′′ }) of ω′′ by length
constant endomorphisms is a derivative of ω with respect to G:

w ∈ fn({ ω′′ }) ⊂− fn(h2({ ω })) ⊂− hn+2({ ω }).

Hence, Pω′′ is a subset of PG:

Pω′′ ⊂− PG.
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The picture of an arbitrary derivative of ω′′ by the length constant endomor-
phisms is, according to Proposition 2.4 of [T02],

p(f (n)(ω′′)) = p(f (n)(x̂)) ∪ p(f(n) (̂x))(o)(f (n)(x)) ∪ p(f(n) (̂x x))(o)(f (n)(x̃)).

Every picture p(f (n)(x)) is a subpicture of p(f (n)(ω′′)) (a subpicture is a
subgraph, possibly shifted). If the picture language Px is infinite, the picture
language Pω′′ is infinite, because any picture has only finitely many subpictures.
Hence, also PG is infinite. This result is stated in the next lemma.

Lemma 3. If G has an x-1-system Tx generating an infinite picture language,
also the picture language PG is infinite.

Now, let all x-1-systems of G generate finite picture languages.
If K is a set of edge sets, Ka denotes the set of edge sets obtained by trans-

lating the edge sets belonging to K by a: Ka = { ‖aw | ‖w ∈ K }. A set of edge
sets is called an edge system. On edge systems, a binary operation is defined as
follows and called the direct union ∪· :

K∪· L = { V ∪W | V ∈ K und W ∈ L } .

This construction implies that the direct union of two finite edge systems
is finite. For any word w ∈ Al such that each of its letters occurs in a second
derivative of ω, let Tw be the pure sDT0L system (A, f,w) and Kw be its edge
system. Let w ∈ Al be a word consisting of only those letters occurring in a
second derivative of the axiom ω. The edge system Kw is

Kw =
{

‖(f (n)(w))
∣∣∣ n ∈ N0, f

(n) ∈ fn
}

=
{

‖(f (n)(w1) · · · f (n)(wl))
}

=
{

‖(f (n)(w1)) ∪ ‖(f(n)(w1))(o)(f (n)(w2)) ∪ · · · ∪ ‖(f(n)(−−−→wl−1))(o)(f (n)(wl))
}

=
{

‖(f (n)(w1)) ∪ ‖w1(o)(f (n)(w2)) ∪ · · · ∪ ‖−−−→wl−1(o)(f (n)(wl))
}

⊂− Kw1 ∪· Kw1(o)
w2

∪· · · · ∪· K
−−−→wl−1(o)
wl

.

For any picture, there are only finitely many edge sets that yield that picture.
Since the x-1-systems of G generate finite picture languages, the edge systems
K
−−−→wi−1(o)
wi

are finite. Hence, also the edge system Kw is finite.
Let the edge system Kf consist of the edge sets of those derivatives of ω

resulting from length constant endomorphisms only:

Kf = { ‖w | w ∈ fn({ ω }), n ∈ N0 } .

Let the edge system Kγ consist of the edge sets of those derivatives of ω that
are obtained by applying arbitrary endomorphisms before the last one, which is
a length contracting endomorphism:

Kγ = { ‖w | w ∈ (hm ◦ g)({ ω }),m ∈ N0 } .
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Furthermore, let Kg consist of the edge sets of those derivatives of ω where
at least one applied endomorphism is length contracting:

Kg = { ‖w | w ∈ (hm ◦ g ◦ fn)({ ω }),m, n ∈ N0 } .

The edge system Kf is the same as Kω. Since every letter of ω also occurs in
a second derivative, the edge system Kω is finite. Hence, Kf is finite.

For each edge set K of Kγ , there are two words v, w with v being an m-
th derivative of the axiom, w being a derivative of v by a length contracting
endomorphism and ‖w = K:

v ∈ hm({ ω }), w = gi(v).

For any word v and (0, μ)-endomorphism gi, one has ‖gi(v) =
⋃

x∈[v]
‖gi(x).

Hence, the edges of each edge set belonging to Kγ lie on the following cross

� � � � � � �������

�

�
��
�
�

�

�
���
�

(−μ, 0)

(0,−μ)

o (μ, 0)

(0, μ)

.

Thus, the edge system Kγ is finite.
If an edge set K belongs to Kg, two words v, w exist such that ‖v = K, v

is an n-th derivative of w by h and w is an (m + 1)-th derivative of the axiom
where the last applied endomorphism is length contracting. Then, the edge set
of w belongs to Kγ :

K ∈ Kg =⇒ ∃v : ‖v = K

and v ∈ (hm ◦ g ◦ fn)({ ω })
and v ∈ fn((hm ◦ g)({ ω }))
and ∃w : v ∈ fn({ w }) ∧ w ∈ (hm ◦ g)({ ω }) ∧ ‖w ∈ Kγ .

If K is an edge set of Kγ , it is the edge set of some word w ∈ (hm ◦ g)({ ω }).
For any derivative v of w by f , one obtains v ∈ fn({ w }) ⊂− (hm ◦ g ◦ fn)({ ω }).
Thus, the edge set of v belongs to Kg:

K ∈ Kγ =⇒ ∃w : ‖w = K

and w ∈ (hm ◦ g)({ ω })
and ∀v : v ∈ fn({ w }) =⇒ ‖v ∈ Kg.

Hence, the edge system Kg can be written as

Kg = { ‖v | v ∈ fn({ w }),w ∈ (hm ◦ g)({ ω }), n,m ∈ N0 } .
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The edge set of a derivative is obtained by replacing the initial edges by the
edge sets of the corresponding derivatives:

‖f (n)(w) =
⋃

(q,x)∈‖w
‖qf (n)(x).

This yields the following proposition.

Proposition 9. If the edge sets of two words v and w coincide, the edge sets of
the derivatives f (n)(v) and f (n)(w) are equal for any f (n) ∈ fn, n ∈ N0.

According to this proposition, Kg can be written as

Kg =
{

‖f (n)(w)
∣∣∣ n ∈ N0, f

(n) ∈ fn, ‖w ∈ Kγ

}
=

⋃
‖w∈Kγ

{
‖f (n)(w)

∣∣∣ n ∈ N0, f
(n) ∈ fn

}
=

⋃
‖w∈Kγ

Kw.

If the edge sets of two words u, v coincide, the edge systems Ku, Kv are equal.
Since Kγ is finite and every edge system Kw is finite, also Kg is finite.

The edge system KG generated by G consists of the edge sets belonging to
derivatives of the axiom. The applied endomorphisms are all length constant
or at least one of them is length contracting. Hence, KG is the union of Kf

and Kg:

KG = Kf ∪ Kg.

Since Kf and Kg are finite, also KG is finite. This implies that also the picture
language PG is finite. This proves the following lemma.

Lemma 4. If every x-1-system Tx of G generates a finite picture language, the
picture language PG is finite as well.

This lemma and Lemma 3 yield together the following criterion for the
finiteness.

Theorem 4. Let G = (A, h, ω) be a mixed, length constant sDT0L system and
f be the set of the length constant endomorphisms involved. The picture language
PG generated by G is finite if and only if every x-1-system Tx = (A, f, x) of G
generates a finite picture language.

By all the stated theorems, one obtains the following.

Theorem 5. It is decidable whether an sDT0L system generates a finite picture
language or not.
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4 Conclusion

In the present paper, synchronous, deterministic tabled, context-free chain code
picture systems based on Lindenmayer systems (sDT0L systems) are studied
with respect to the finiteness of the picture languages generated. It is shown that
it is decidable whether an sDT0L system generates a finite picture language or
not. The systems considered are divided up in length contracting, constant and
expanding systems. Furthermore, pure and mixed systems are distinguished.
Length contracting systems generate finite, length expanding systems generate
infinite picture languages. Among the length constant systems are those with
finite picture languages and those with infinite ones. A finiteness criterion is
developed and proved.
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Abstract. We show that tissue P systems with symport/antiport hav-
ing 3 cells and symport/antiport rules of minimal weight generate all
recursively enumerable sets of numbers. Constructed systems simulate
register machines and have purely deterministic behaviour. Moreover,
only 2 symport rules are used and all symbols of any system are present
in finite number of copies (except for symbols corresponding to regis-
ters of the machine). At the end of the article some open problems are
formulated.

1 Introduction

P systems were introduced by Gh. Păun in [11] as distributed parallel com-
puting devices of biochemical inspiration. These systems are inspired from the
structure and the functioning of a living cell. The cell is considered as a set of
compartments (membranes) nested one in another and which contain objects
and evolution rules. The base model does not specify neither the nature of these
objects, nor the nature of rules. Numerous variants specify these two parameters
by obtaining a lot of different models of computing, see [16] for a comprehen-
sive bibliography. One of these variants, P systems with symport/antiport, was
introduced in [10]. This variant uses one of the most important properties of
P systems: the communication. This property is so powerful, that it suffices by
itself for a big computational power. These systems have two types of rules:
symport rules, when several objects go together from one membrane to another,
and antiport rules, when several objects from two membranes are exchanged.
In spite of a simple definition, they may compute all Turing computable sets
of numbers [10]. This result was improved with respect to the number of used
membranes and/or the weight of symport/antiport rules ([4], [6], [8], [12], [3]).

Rather unexpectedly, minimal symport/antiport membrane systems,i.e.when
one uses only one object in symport or antiport rules, are universal. The proof of
this result may be found in [2] and the corresponding system has 9 membranes.
This result was improved first by reducing the number of membranes to six [7],
after that to five [3] and four [5]. In [15] G. Vaszil showed that three membranes
are sufficient to generate all recursively enumerable sets of numbers. Another
proof of the same result that was obtained independently may be found in [1].
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The inspiration for tissue P systems comes from two sides. From one hand, P
systems previously introduced may be viewed as transformations of labels associ-
ated to nodes of a tree. Therefore, it is natural to consider same transformations
on a graph. From the other hand, they may be obtained by following the same
reflections as for P systems, but starting from a tissue of cells and no more from
a single cell.

Tissue P systems were first considered by Gh. Păun and T. Yokomori in [13]
and [14]. They have reacher possibilities and the advantages of new topology have
to be investigated. Tissue P systems with symport/antiport were first considered
in [12] where several results having different values of parameters (graph size,
maximal size of connected component, weight of symport and antiport rules) are
presented.

In this paper we consider minimal symport and antiport rules, i.e. we fix
two of four parameters, the weight of symport and antiport rules, to 1. We
show that in this case we can construct a system defined on a graph with 4
nodes, i.e. 3 cells, that simulates any (non-)deterministic register machine (or
counter automata). Moreover, in the deterministic case, the obtained system is
also deterministic and only one evolution is possible at any time. Therefore, if
the computation stops, then we are sure that the corresponding register machine
stops on the provided input. Another difference from previous proofs is that we
use a very small amount of symbols present in an infinite number of copies in
the environment.

We also introduce weak tissue P systems with symport/antiport that are ob-
tained by combining ideas of P systems with symport/antiport and tissue P
systems. These systems are a particular variant of tissue P systems with sym-
port/antiport and we present the proof of the main theorem with respect to
these systems.

We also remark that we obtain low complexity values for several parameters.
More exactly, the systems that we construct use a small amount of symbols and
have only 2 symport rules. We remark that because we deal with antiport rules
of size one, we need at least one symport rule, otherwise we cannot change the
number of objects in the system.

2 Definitions

We denote by N the set of all non-negative natural numbers: {0, 1, . . .} and by
N′ the set {1, 2, . . . }.

A multiset S over O is a mapping fS : O −→ N. The mapping fS specifies
the number of occurrences of each element of S. The size of the multiset S is
|S| =

∑
x∈O fS(x). The multiset defined by the mapping a → 3, b → 1, c → 0

will be specified as {a3, b} or a3b.
Multisets as defined above are called finite multisets. If we consider that

mapping fS is of form fS : O −→ N ∪ {∞}, i.e. elements of S may have an
infinite multiplicity, then we obtain infinite multisets.

A deterministic register machine is the following construction:
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M = (Q, R, q0, qf , P ),

where Q is a set of states, R = {r1, . . . , rk} is the set of registers (called also
counters), q0 ∈ Q is the initial state, qf ∈ Q is the final state and P is a set of
instructions (called also rules) of the following form:

1. (p, A+, q) ∈ P , p, q ∈ Q, p �= q, A ∈ R (being in state p, increase register A
and go to state q).

2. (p, A−, q, s) ∈ P , p, q, s ∈ Q, A ∈ R (being in state p, decrease register A
and go to q if successful or to s if A is zero).

3. STOP (may be associated only to the final state qf ).

We note that for each state p there is only one instruction of the type above.
A configuration of a register machine is given by the k+1-tuple (q, n1, . . . , nk)

describing the current state of the machine as well as contents of all registers.
A transition of the register machine consists in updating/checking the value of
a register according to an instruction of one of types above and by changing the
current state to another one.

We say that M computes a value y ∈ N on the input x ∈ N if starting
from the initial configuration (q0, x, 0, . . . , 0) it reaches the final configuration
(qf , y, 0, . . . , 0).

We say that M recognises the set S ⊆ N if for any input x ∈ S the ma-
chine stops and for any y �∈ S the machine performs an infinite computation.
It is known that register machines recognise all recursively enumerable sets of
numbers [9].

We may also consider non-deterministic register machines where the first
type of instruction is of the form (p, A+, q, s) and with the following meaning:
if the machine is in state p, then the counter A is increased and the current
state is changed to q or s non-deterministically. In this case the result of the
computation is the set of all values of the first counter when the computation is
halted. We assume that the machine empties all counters except the first counter
before stopping. It is known that non-deterministic register machines generate
all recursively enumerable sets of non-negative natural numbers starting from
empty counters.

A tissue P system with simport/antiport (tPsa system) of degree m ≥ 1 is a
construct

Π = (O,G,w1, . . . , wm, E,R, i0),

where O is the alphabet of objects and G is the underlying directed labeled
graph of the system. The graph G has m+1 nodes and the nodes are numbered
from 0 to m. We shall also call nodes from 1 to m cells and node 0 the envi-
ronment. There is an edge between each cell i, 1 ≤ i ≤ m and the environment.
Each node has a label that contains a multiset of objects. The environment is a
special node whose label may contain an infinite multiset. The symbols of the
multiset labeling the environment which are present with an infinite multiplicity
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are given by the set E. The symbols w1, . . . , wm are multisets over O that give
initial labels of nodes of G. The symbol i0 is the output node, and R is a finite
set of rules (associated to edges) of the following forms:

1. (i, x, j), 1 ≤ i ≤ m, 0 ≤ j ≤ m, i �= j, x ∈ O+ (symport rules for the
communication).

2. (i, x/y, j), 0 ≤ i, j ≤ m, i �= j, x, y ∈ O+(antiport rules for the communica-
tion).

The first rule sends a multiset of objects x from node i to node j. The second
rule exchanges multisets x and y situated in nodes i and j respectively. The
weight of symport rule (i, x, j) is equal to |x|, while the weight of an antiport
rule is equal to max{|x|, |y|}.

A computational step is made by applying all rules in a non-deterministic
maximal parallel way. A configuration of the system is the following m+1-tuple
(z0, z1, . . . , zm) where each zi, 1 ≤ i ≤ m represents the label of vertex i and
z0 represents objects that appear with a finite multiplicity in the environment
(initially z0 is an empty multiset). The computation stops when no rule may be
applied. The result of a computation is given by the number of objects situated
in cell i0, i.e. by the size of the multiset labeling vertex i0.

We denote by NOtPn,m(symp, antiq) the family of all sets of numbers com-
puted by tissue P systems with symport/antiport of degree at most m with the
maximal size of the connected component equal to n and which have symport
rules of weight at most p and antiport rules of weight at most q.

Now we introduce a weaker variant of the previous systems where rules are
associated to nodes.

A weak tissue P system with simport/antiport (wtPsa system) of degree m ≥
1 is a construct

Π = (O,G,w1, . . . , wm, E,R0, R1, . . . , Rm, i0),

where O is the alphabet of objects, G is the underlying graph of the system,
w1, . . . , wm are strings over O representing the multisets of objects initially la-
beling the cells of the system, E is the set of objects present in arbitrarily many
copies in the environment, i0 is the output cell, and R1, . . . , Rm are sets of rules
associated to cells (R0 to the environment) of the following forms:

1. (x, in; y, out) (or (y, out;x, in))
2. (x, in) (or (y, out))

The first rule (antiport rule) exchanges multisets of objects x and y between
two cells having a bidirectional connection. The second rule (symport rule) moves
the multiset of objects x to the current cell from a cell which have a connection
with it. The other variant sends the multiset y to a cell connected to the current
one. If there are several connections, one of them is chosen non-deterministically.

At each step all rules that can be applied are applied in parallel in a non-
deterministical manner. The result of the computation is the number of objects
in the output cell.
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More precisely, in weak tissue P systems with symport/antiport rules are
associated to graph nodes and not to edges. We remark that each rule of type
(x, in; y, out) ∈ Ri of such system, corresponds to the following set of rules of
an ordinary tissue P system with symport/antiport: {(i, x/y, j)} for all nodes
j that have a bidirectional connection with i. Similarly, rules (x, in) ∈ Ri and
(y, out) ∈ Ri correspond to the following set of rules {(k, x, i)} and {i, y, j} for
all nodes k that have an edge to node i and for all nodes j that have an incoming
edge from node i.

Therefore, a weak tissue P system with symport/antiport is a particular case
of tissue P systems with symport/antiport.

We denote by NOwtPm(symp, antiq) the family of all sets of numbers com-
puted by weak tissue P systems with symport/antiport of degree at most m
which have symport rules of weight at most p and antiport rules of weight at
most q.

We also remark that there is a similarity between wtPsa systems and P
systems with symport/antiport, see [12], which are a special case of tPsa systems
defined on trees. However, they differ by the fact that in the second model
communications are allowed only with upper cells.

3 The Power of Tissue P Systems with Symport/Antiport

Lemma 1. For any deterministic register machine M and for any input In

there is a weak P system with symport/antiport of degree 3 having symport and
antiport rules of weight 1, which simulates M on this input and produces the
same result.

Proof. We consider an arbitrary deterministic register machine M = (Q, R, q0,
qf , P ) and we construct a weak tissue P system with symport/antiport that will
simulate this machine on the input In. We consider a more general problem: we
shall simulate M on any initial configuration (q0, N1, . . . , Nk). By commodity, we
renumber the nodes of the graph and we consider nodes from 1 to 4 instead of 0
to 3. We also assume, by commodity, that we may have objects initially present
in a finite number of copies in the environment and we denote this multiset by
w1. We shall show later that this assumption is not necessary.

We define the system as follows.
Π = (O,G,w1, w2, w3, w4, E,R1, R2, R3, R4, 2).
O = {q : q ∈ Q} ∪ {A+

pq : ∃(p, A+, q) ∈ P} ∪ {X,Y,Z1, Z2}
∪ {A−pqs, Q

−
pqs, Q

0
pqs, q

′ : ∃(p, A−, q, s) ∈ P} ∪ {A : A ∈ R}.
E = {A : A ∈ R}.

We consider the following underlying graph G
(cell 1 is the environment):

�������	1
w1

��
��

��
�

��
��

��
�

�������	2w2 �������	4 w4

�������	3
w3

�������

�������

Below we give in tables rules and objects of our system. In fact, each wi and
Ri, 1 ≤ i ≤ 4 is the union of corresponding cells in all tables.
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Rule numbers follow the following convention: the first number is the num-
ber of cell (environment) where the rule is located, the second number indicates
which instruction is simulated using this rule (2 for incrementing, 3 for decre-
menting, 4 for stop and 1 for common) and the third is the number in group.

Encoding of initial configuration of M (1 ≤ j ≤ k):
Node Object(s)

1.
2. r

Nj

j , q0

3.
4.

Common rules and objects (q ∈ Q \ {qf}, A ∈ R, p ∈ Q \ {q0}):
Node Object(s) Rules

1. Y,A∞ 1.1.1 : (q, out;X, in) 1.1.2 : (Y, in)
2. X 2.1.1 : (X, in)
3.
4. p

For any rule (p, A+, q) ∈ P we have following rules and objects:
Node Object(s) Rules

1. 1.2.1 : (q, in;A+
p,q, out)

2. 2.2.1 : (p, out;A+
pq, in) 2.2.2 : (A, in;A+

pq, out)
3. A+

p,q

4. 4.2.1 : (p, in;A+
pq, out)

For any rule (p, A−, q, s) ∈ P we have following rules and objects:
Node Object(s) Rules

1. 1.3.1 : (A, in;Q0
pqs, out) 1.3.3 : (Q−pqs, out; s, in)

1.3.2 : (q′, out; q, in)
2. 2.3.1 : (p, out;A−pqs, in) 2.3.4 : (A, in;Q0

pqs, out)
2.3.2 : (Y, in;A−pqs, out) 2.3.5 : (Q−pqs, out; q′, in)
2.3.3 : (Q−pqs, in;A, out) 2.3.6 : (q′, out;Y, in)

3. A−pqs 3.3.1 : (p, out;Q−pqs, in) 3.3.2 : (Q0
pqs, out; q′, in)

4. Q0
pqs, Q

−
pqs, q

′ 4.3.1 : (Q0
pqs, out;A−pqs, in) 4.3.3 : (Q−pqs, out;Q0

pqs, in)
4.3.2 : (A−pqs, out;Q−pqs, in)

Rules and objects associated to the STOP instruction:

Node Object(s) Rules
1. 1.4.1 : (qf , out;Z1, in)
2. 2.4.1 : (qf , out;Y, in)
3. Z1 3.4.1 : (qf , out;X, in) 3.4.2 : (X, out;Z2, in)

3.4.3 : (Z1, in)
4. Z2
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We organise system Π as follows. Node 2 contains the current configura-
tion of machine M . Node 4 contains one copy of objects that correspond to
each state. In the same node, there are additional symbols used for the simula-
tion of the decrementing operation and which are present in one copy. Node
3 contains symbols used for simulation of the incrementing and decrement-
ing. Similarly, these symbols are present only in one copy. Node 1 contains
symbols rj , 1 ≤ j ≤ k which are used to increment registers. These sym-
bols are present in an infinite number of copies. Finally, node 1, 2, 3 and 4
contain symbols Y , X, Z1 and Z2 respectively, which are used for technical
purposes.

Each configuration (p, rn1
1 , . . . , rnk

k ) of machine M is encoded as follows. Cell
2 contains objects rj of the multiplicity nj , 1 ≤ j ≤ k as well as the object p. It
is easy to observe that the initial configuration of Π corresponds to an encoding
of the initial configuration of M .

Now we shall discuss the simulation of instructions of M .

Incrementing
Suppose that M is in configuration (p, rn1

1 , . . . , rnk

k ) and
that there is a rule (p,A+,q) in P (A = rj). Suppose
that the value of A is n (nj = n). This corresponds to
the following configuration of Π (see at the right) where
we indicate only symbols that we effectively use.

�������	1
A∞

��
��

��
�

��
��

��
�

�������	2
An

p
X

�������	4 q

�������	3
A+

pq

�������

�������

Now we present the evolution of the system in this case.
The symbol p in the second node that encodes the current state of M trig-

gers the application of rule 2.2.1 and it exchanges with A+
pq which comes to the

second node.
After that, the last symbol brings an object A to node 2, which corresponds

to an incrementing of register A. Further, the symbol A+
pq goes to node 4 and

brings from there to node 1 the new state q.
Finally, the symbol A+

pq returns to its original loca-
tion (node 3) and it brings the symbol p to node 4 where
all symbols that correspond to states of the machine
are situated. At the same time, the symbol q moves to
node 2 (if q �= qf ). This configuration is shown at the
right.

�������	1
A∞

��
��

��
�

��
��

��
�

�������	2
An+1

q
X

�������	4 p

�������	3
A+

pq

�������

�������

The last configuration differs from the first one by the following. In node
2, there is one more copy of object A and the object p was replaced by the
object q. All other symbols remained on their places and the symbol p was
moved to node 4 which contains as before one copy of each state of the register
machine that is not current. This corresponds to the following configuration of
M : (q, rn1

1 , . . . , r
nj+1
j , . . . , rnk

k ), i.e. we simulated the corresponding instruction
of M .
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Decrementing

Suppose that M is in configuration (p, rn1
1 , . . . , rnk

k ) and
that there is a rule (p,A−,q, s) in P (A = rj). Suppose
that the value of A is n (nj = n). This corresponds to
the following configuration of Π (see at the right) where
we indicate only symbols that we effectively use.

�������	1
Y , A∞

��
��

��
�

��
��

��
�

�������	2
An

p
X

�������	4
q, s
q′

Q0
pqs, Q

−
pqs

�������	3
A−pqs

�������

�������

Below we present the evolution of the system in this case.

The symbol p in the second node that encodes the
current state of M triggers the application of rule 2.3.1
and it exchanges with A−pqs which comes to the second
node. After that, it goes to node 4 bringing at the same
time the symbol Q−pqs in node 3. In the meanwhile, A−pqs

is moved to node 1. The obtained configuration is shown
at the right.

�������	1
A−pqs, A∞

��
��

��
�

��
��

��
�

�������	2
An

X
Y

�������	4
p, q, s

q′

Q0
pqs

�������	3
Q−pqs

�������

�������

Now there are two cases, n > 0 and n = 0, and the system behaves differently
in each case.

CASE A: n > 0

First, suppose that n > 0. In this case, Q−pqs goes to node 2 and brings a symbol
A to node 3, which is further exchanged with the symbol Q0

pqs brought pre-
viously by A−pqs to node 1. Because rule 1.3.1 may exchange the symbol Q0

pqs

with any A situated in any node connected to node 1, the symbol Q0
pqs may

arrive in node 2 if there are enough symbols A in that node. After that, this
symbol may either go to node 3, in this case we obtain the desired configura-
tion, or it may return to node 1, in this case we obtain the same configura-
tion as the one from two steps ago. So, an infinite computation may happen at
this place, but in this case the system Π does not produce any result. There-
fore, we have to do at some moment the exchange of Q0

pqs with symbol A from
node 3.

After that the symbol Q0
pqs brings the symbol q′ to

node 3 which exchanges with Q−pqs. Finally, the symbol
q′ moves to node 1 and brings after that the symbol q
which is moved to node 2 (if q �= qf ) afterwards. At the
same time, symbols A−pqs and Q−pqs are exchanged and
return to their original places (see configuration at the
right).

�������	1
Y , A∞

��
��

��
�

��
��

��
�

�������	2
An−1

q
X

�������	4
p, s
q′

Q−pqs,Q
0
pqs

�������	3
A−pqs

�������

�������

We can see that the obtained configuration differs from the first one by the
following. In node 2, there is one copy of object A less and the object p was
replaced by the object q. All other symbols remained on their places and the
symbol p was moved to node 4 which contains as before one copy of each state of
the register machine that is not current. This corresponds to the following con-
figuration of M : (q, rn1

1 , . . . , r
nj−1
j , . . . , rnk

k ), i.e. we simulated the corresponding
instruction of M .
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CASE B: n = 0
Now suppose that n = 0. In this case, Q−pqs remains in node 3 for one more step.
After that, it exchanges with A−pqs.

Now symbols Q−pqs and Q0
pqs are exchanged and after

that Q−pqs brings in node 1 the symbol s which moves
after that to node 2 (if s �= qf ) (see configuration at the
right). We remark that the first exchange takes place
only if the value of counter A is equal to zero, other-
wise rules 3.3.1 and 1.3.1 are applied and the system
never reaches the configuration above. Similarly, rule
1.3.1 cannot be applied because there are no objects
A in node 2 or 3.

�������	1
Y ,A∞

��
��

��
�

��
��

��
�

�������	2
s
X

�������	4
p, q
q′

Q−pqs,Q
0
pqs

�������	3
A−pqs

�������

�������

We can see that the obtained configuration differs from the first one by the
following. In node 2, the object p was replaced by the object s. All other symbols
remained on their places and the symbol p was moved to node 4 which contains
as before one copy of each state of the register machine that is not current. This
corresponds to the following configuration of M : (s, rn1

1 , . . . , r0
j , . . . , rnk

k ), i.e. we
simulated the corresponding instruction of M .

Stop

If we simulate an instruction that leads to a final state qf , then symbol qf re-
mains in node 1 and starts the halting procedure. We present below the evolution
of the system in this case.

It is easy to see that firstly qf goes to node 3 and after that it exchanges with
X from node 2. After that X either return to node 2, in this case we obtain the
first configuration and we can continue one more time, or it moves to node 4
using the rule 3.4.2 and no rule can be applied any more.

Final Remarks

It is clear that we simulate the behaviour of M . Indeed, we simulate an instruc-
tion of M and all additional symbols return to their places what permits to
simulate the next instruction of M . Moreover, this permits to reconstruct easily
a computation in M from a successful computation in Π. For this it is enough
to look for configurations which have a state symbol p in node 2. We stop the
computation when rule 3.4.2 is used and symbol X goes to node 4. In this case,
node 2 contains the result of the computation. We remark that symbol X may
arrive in node 3 only if the simulation reached the final state qf .

We remark that the assumption that w1 = {Y } is not necessary. Indeed, we
may initially place Y in node 2.

We remark that we used 3 symport rules. If we permit an encoding of the
result we may eliminate symport rule 2.4.2. In this case, the system Π will
compute n + 1 if M computes n.

We also remark that if we are sure that M always computes a positive number,
then we may compute the same result using only 2 symport rules. For this, starting
from M we construct a new machine M ′ which has a new halting state q′f and an



Tissue P Systems with Minimal Symport/Antiport 427

additional instruction (qf , A−, q′f , q′f ) where A is the resulting register r1 of M .
After that we construct the system Π as above and we eliminate rules from the
group associated to the STOP instruction. It is easy to see that Π will compute n.

Theorem 1. NOwtP3(sym1, anti1) = NRE.

Proof. It is easy to observe that the system of previous lemma may simu-
late a non-deterministic register machine. Indeed, in order to simulate a rule
(p, A+, q, s) of such machine, we use the same rules and objects as for rule
(p, A+, q). We only need to add a rule 1.2.1′ : (s, in;A+

pq, out) to node 1.

An easy corollary of these results is the following theorem:

Theorem 2. NOtP3,3(sym1, anti1) = NRE.

However, we remark that we may improve the previous result by using new
possibilities that are present in this case. Indeed, we always used the same edge
for symport or antiport during the transition between configurations. Therefore,
we may associate the corresponding symport or antiport rule to that edge. Con-
sequently, we will not have any more a possible infinite computation during the
simulation of decrementing because we place the rule 1.3.1 on the edge going
from node 1 to 3. Similarly, we can place the rule 2.1.1 on the edge going from
node 1 to 2 which permits us to avoid the possible infinite computation at the
end. In this case, we can also eliminate the rule 2.4.2 what reduces the number
of used symport rules down to 2. Therefore, the obtained system will have a
deterministic evolution in case when we simulate a deterministic machine.

Descriptional Complexity

Let M be a register machine having n states, k registers and n1 incrementing
instructions, i.e. M has n − n1 − 1 decrementing instructions. In this case the
system constructed as in Lemma 1 need at most n + n1 + 4 ∗ (n− n1 − 1) + 4 =
5n − 3n1 symbols present in one copy, k symbols present in infinite number of
copies, n − 2 + 4 ∗ n1 + 14 ∗ (n − n1 − 1) + 4 = 15n − 10n1 − 12 antiport rules
and 3 symport rules. If we consider tPsa systems, then the number of symport
rules is decreased to 2.

4 Conclusions

In this article we studied tissue P systems with symport/antiport. We introduced
a weaker variant of these systems and we showed that it is able to generate any
recursively enumerable set of numbers. We remark that contrarily to other proofs
concerning P systems with symport/antiport, the system that we constructed
is deterministic. More exactly, in Lemma 1 there are only two places where a
non-determinism may occur and if we consider ordinary tPsa systems, then these
computations may be avoided. Consequently, if we have a deterministic register
machine M and an initial configuration (q0, r

n1
1 , . . . , rnk

k ) of this machine, then
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the corresponding tPsa system constructed as described in Lemma 1 and using
remarks given after Theorem 2 will have a deterministic behaviour, i.e. there
will be only one possible evolution at each step and it will halt if and only if
M halts on the above configuration. We highlight this deterministic evolution
because it makes the behaviour of the system more predictable and makes such
systems good candidates for possible implementations.

Another advantage of our proof technique with respect to other proofs is that
we need only a finite number of symbols present in one copy, except symbols
encoding counters.

Weak tissue P systems with symport/antiport are almost deterministic and
if we impose evolutions where a rule cannot be applied 2 and 4 steps after its
previous application, then these systems also become deterministic.

An open problem naturally raised by the results of this article is to know if
3 or less nodes are sufficient in order to get the universality in the case of tPsa
systems. We conjecture that 3 nodes permit to do such computations.

Another open problem concerns the number of symport rules used. In our
tPsa system we used 2 symport rules. The question if we may obtain the same
result using a smaller number of symport rules remains open. We remark that
because we deal with antiport rules of size one, we need at least one symport
rule, otherwise we cannot change the number of objects in the system.

We may consider a generalisation of tissue P systems with symport/antiport
by taking off restrictions on the graph that they impose. In this case we may
label the communication graph of the system by infinite multisets, hence erasing
the difference between environment and cells.

Another possibility is to change the definition of tPsa systems and to consider
as result a vector of numbers. In order to do this we count the number of elements
corresponding to each register of the machine that are present in resulting node
at the end of the computation. The resulting vector will contain these numbers
as values of its components.
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editors, Aspects of Molecular Computing: Essays Dedicated to Tom Head, on the
Occasion of His 70th Birthday, volume 2950 of Lecture Notes in Computer Science,
pages 254–265. Springer-Verlag, 2004.
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12. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.
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Jurdziński, T. 237, 249

Kurganskyy, Oleksiy 261
Kuske, Dietrich 30, 272
Kutrib, Martin 102, 284

La Torre, Salvatore 200
Lakin, Stephen R. 296
Lange, Klaus-Jörn 89
Lohrey, Markus 308
Lonati, Violetta 114

Madonia, Maria 63
Malcher, Andreas 284
Maletti, Andreas 321
McCartin, Catherine 12
Mignosi, Filippo 175
Mráz, F. 237, 249
Muscholl, Anca 30, 334

Otto, F. 237, 249

Parente, Mimmo 200
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